Evaluation of R Tools for Downloading MODIS Images and Their Use in Urban Growth Analysis of the City of Tarija (Bolivia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. MODIS
2.2. R Tools for Downloading MODIS Data
2.2.1. MODIS Package
2.2.2. MODISTools
2.2.3. MODIStsp
2.2.4. RGEE
2.2.5. RGIStools
2.2.6. AppEEARS
2.3. Evaluation of R Tools
- Download time;
- Additional post-processing time;
- Memory used while downloading;
- Local memory occupied on the computer;
- Downloaded file formats.
2.4. Example of Application: Analysis of Urban Growth Using EVI
3. Results
3.1. Download Times
3.2. Memory Used during Download
3.3. Local Memory Occupied
3.4. Downloaded File Characteristics
3.5. Example of Application: Analysis of Urban Growth Using EVI
4. Discussion
4.1. Evaluation of R Tools
4.2. Example of Application: Analysis of Urban Growth Using EVI
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Donaldson, D.; Storeygard, A. The View from Above: Applications of Satellite Data in Economics. J. Econ. Perspect. 2016, 30, 171–198. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Leone, A.P.; Wright, G.G.; Corves, C. The Application of Satellite Remote Sensing for Soil Studies in Upland Areas of Southern Italy. Int. J. Remote Sens. 1995, 16, 1087–1105. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision Agriculture—A Worldwide Overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Lu, D. The Potential and Challenge of Remote Sensing-Based Biomass Estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-Area Crop Mapping Using Time-Series MODIS 250 m NDVI Data: An Assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A Crop Phenology Detection Method Using Time-Series MODIS Data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal Vegetation Cover Variations Associated with Climate Change and Ecological Restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Churkina, G.; Schimel, D.; Braswell, B.; Xiao, X. Spatial Analysis of Growing Season Length Control over Net Ecosystem Exchange. Glob. Chang. 2005, 11, 1777–1787. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q.; Trung, N.H. A Comparative Analysis of Multitemporal MODIS EVI and NDVI Data for Large-Scale Rice Yield Estimation. Agric. For. Meteorol. 2014, 197, 52–64. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Found for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Tuck, S.L.; Phillips, H.R.P.; Hintzen, R.E.; Scharlemann, J.P.W.; Purvis, A.; Hudson, L.N. MODISTools-Downloading and Processing MODIS Remotely Sensed Data in R. Ecol. Evol. 2014, 4, 4658–4668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattiuzzi, M.; Detsch, F. Acquisition and Processing of MODIS Products. R Package Version 1.2.3. Available online: https://github.com/MatMatt/MODIS (accessed on 14 June 2022).
- Pérez-Goya, U.; Montesino -SanMartin, M.; Militino, A.F.; Ugarte, M.D. RGISTools: Handling Multiplatform Satellite Images. 2020. Available online: https://github.com/spatialstatisticsupna/RGISTools#RGISTools (accessed on 14 June 2022).
- Aybar, C.; Wu, Q.; Bautista, L.; Yali, R.; Barja, A. Rgee: An R Package for Interacting with Google Earth Engine. Available online: https://github.com/r-spatial/rgee (accessed on 15 August 2020).
- Busetto, L.; Ranghetti, L. MODIStsp: An R Package for Automatic Preprocessing of MODIS Land Products Time Series. Comput. Geosci. 2016, 97, 40–48. [Google Scholar] [CrossRef] [Green Version]
- AppEEARS Team Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). Available online: https://lpdaac.usgs.gov/tools/appeears/ (accessed on 9 January 2021).
- Militino, A.F.; Montesino-SanMartin, M.; Pérez-Goya, U.; Ugarte, M.D. Using RGISTools to Estimate Water Levels in Reservoirs and Lakes. Remote Sens. 2020, 12, 1–1934. [Google Scholar] [CrossRef]
- Vuolo, F.; Mattiuzzi, M.; Klisch, A.; Atzberger, C. Data Service Platform for MODIS Vegetation Indices Time Series Processing at BOKU Vienna: Current Status and Future Perspectives. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications III; Habib, S., Messinger, D., Maltese, A., Michel, U., Civco, D.L., Ehlers, M., Schulz, K., Nikolakopoulos, K.G., Eds.; SPIE: Edinburgh, UK, 2012; Volume 8538, pp. 83–92. [Google Scholar]
- Heck, E.; de Beurs, K.M.; Owsley, B.C.; Henebry, G.M. Evaluation of the MODIS Collections 5 and 6 for Change Analysis of Vegetation and Land Surface Temperature Dynamics in North and South America. ISPRS J. Photogramm. Remote Sens. 2019, 156, 121–134. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An Overview of MODIS Land Data Processing and Product Status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nickless, D. Terra and Aqua MODIS Products Available from NASA GES DAAC. Adv. Sp. Res. 2004, 34, 710–714. [Google Scholar] [CrossRef]
- NASA. MODIS Web. Available online: https://modis.gsfc.nasa.gov/ (accessed on 14 January 2021).
- Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination. Remote Sens. Environ. 2000, 74, 609–620. [Google Scholar] [CrossRef]
- Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground Biomass Assessment in Colombia: A Remote Sensing Approach. For. Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring Vegetation Phenology Using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R 2020; RStudio: Boston, MA, USA, 2020. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling, R Packag version 3.3-13; 2020. Available online: http://cran.r-project.org/package=raster (accessed on 14 June 2022).
- The Comprehensive R Archive Network (CRAN). Available online: https://cran.r-project.org/ (accessed on 14 June 2022).
- GitHub. Available online: https://github.com/ (accessed on 14 June 2022).
- DAAC LP. Land Processes Distributed Active Archive Center (LP DAAC). Available online: https://lpdaac.usgs.gov/ (accessed on 14 June 2022).
- Hufkens, K. MODISTools: Interface to the “MODIS Land Products Subsets” Web Services. R Package version 1.1.1. Available online: https://CRAN.R-project.org/package=MODISTools (accessed on 14 June 2022).
- NASA. Web Service: MODIS/VIIRS Land Products. Available online: https://modis.ornl.gov/data/modis_webservice.html (accessed on 14 June 2022).
- NASA. NASA Web Server. Available online: https://earthdata.nasa.gov/ (accessed on 14 June 2022).
- Preston, D.; Macklin, M.; Warburton, J. Fewer People, Less Erosion: The Twentieth Century in Southern Bolivia. Geogr. J. 1997, 163, 198–205. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística–INE Censo de Población y Vivienda. 2012. Available online: https://www.ine.gob.bo/ (accessed on 14 January 2022).
- GeoBolivia-Infraestructura de Datos Espaciales Del Estado Plurinacional de Bolivia, GeoBolivia Web Server. Available online: http://geo.gob.bo/portal/ (accessed on 14 June 2022).
- Baccarelli, E.; Biagi, M.; Cordeschi, N.; Pelizzoni, C. Minimization of Download Times for Large Files over Wireless Channels. IEEE Trans. Mob. Comput. 2007, 6, 1105–1115. [Google Scholar] [CrossRef]
- Joshi, G.; Liu, Y.; Soljanin, E. Coding for Fast Content Download. In Proceedings of the 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton 2012), Monticello, IL, USA, 1–5 October 2012; pp. 326–333. [Google Scholar] [CrossRef] [Green Version]
- Hester, J. Bench: High Precision Timing of R Expressions. R Package. Version 1.1.1. Available online: https://CRAN.R-project.org/package=bench (accessed on 14 June 2022).
- Panda, P.R.; Dutt, N.D.; Nicolau, A. Local Memory Exploration and Optimization in Embedded Systems. IEEE Trans. Comput. Des. Integr. Circuits Syst. 1999, 18, 3–13. [Google Scholar] [CrossRef]
- Fang, J.; Sips, H.; Jääskeläinen, P.; Varbanescu, A.L. Grover: Looking for Performance Improvement by Disabling Local Memory Usage in OpenCL Kernels. In Proceedings of the 2014 43nd International Conference on Parallel Processing (ICPP), Minneapolis, MN, USA, 8–10 November 2014; pp. 162–171. [Google Scholar] [CrossRef]
- Cruces, N.; Seco, D.; Guitérrez, G. A Compact Representation of Raster Time Series. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; pp. 103–111. [Google Scholar]
- Wu, P.; Fang, Y.; Chen, B.; Zhao, Y.; Yan, M. The Raster Data Management in a Spatial Data Grid. In Proceedings of the 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24–26 September 2009; pp. 1–4. [Google Scholar]
- Rudis, B.; Mecum, B.; Mooney, G. Speedtest. Available online: https://github.com/hrbrmstr/speedtest (accessed on 14 June 2022).
- Jain, A.; Nandakumar, K.; Ross, A. Score Normalization in Multimodal Biometric Systems. Pattern Recognit. 2005, 38, 2270–2285. [Google Scholar] [CrossRef]
- Lea Plaza, S. Tarija En Los Imaginarios Urbanos. Temas Soc. 2003, 24, 152–170. [Google Scholar]
- Lizárraga Aranibar, P. Vacaflores Rivero, C. Cambio y Poder En Tarija: La Emergencia de La Lucha Campesina; Plural Editores: La Paz, Bolivia, 2007; ISBN 9789995411121. [Google Scholar]
- Sun, L.; Chen, J.; Li, Q.; Huang, D. Dramatic Uneven Urbanization of Large Cities throughout the World in Recent Decades. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Miller, G.; Buyantuev, A.; Pataki, D.E.; Gillespie, T.W.; Pincetl, S. Urban Vegetation and Income Segregation in Drylands: A Synthesis of Seven Metropolitan Regions in the Southwestern United States. Environ. Res. Lett. 2013, 8, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User ’s Guide (Collection 6); University of Arizona: Tuscon, AZ, USA, 2015; Volume 31. [Google Scholar]
- Gnauck, A. Interpolation and Approximation of Water Quality Time Series and Process Identification. Anal. Bioanal. Chem. 2004, 380, 484–492. [Google Scholar] [CrossRef]
- Killick, R.; Haynes, K.; Eckley, I. Changepoint: An R Package for Changepoint Analysis. R Package Version 2.2.2. Available online: https://CRAN.R-project.org/package=changepoint (accessed on 14 June 2022).
- Militino, A.F.; Ugarte, M.D.; Pérez-Goya, U. Detecting Change-Points in the Time Series of Surfaces Occupied by Pre-Defined NDVI Categories in Continental Spain from 1981 to 2015. Stud. Syst. Decis. Control 2018, 142, 295–307. [Google Scholar] [CrossRef]
- Van den Burg, G.J.J.; Williams, C.K.I. An Evaluation of Change Point Detection Algorithms. arXiv 2020, arXiv:2003.06222. [Google Scholar]
- Davis, B.N.; Werpy, J.; Friesz, A.; Impecoven, K.; Quenzer, R.L.; Maiersperger, T.; Meyer, D.J. Interactive Access to LP DAAC Satellite Data Archives Through a Combination of Open-Source and Custom Middleware Web Services. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–20. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hereher, M.E. Effect of Land Use/Cover Change on Land Surface Temperatures-The Nile Delta, Egypt. J. African Earth Sci. 2017, 126, 75–83. [Google Scholar] [CrossRef]
- Wan, H.; Shao, Y.; Campbell, J.B.; Deng, X. Mapping Annual Urban Change Using Time Series Landsat and NLCD. Photogramm. Eng. Remote Sens. 2019, 85, 715–724. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Gui, X.; Zheng, Y.; Zhang, H.; Huang, X. Urbanization Effects on Vegetation and Surface Urban Heat Islands in China’s Yangtze River Basin. Remote Sens. 2017, 9, 540. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L. Spatiotemporal Trends of Terrestrial Vegetation Activity along the Urban Development Intensity Gradient in China ’ s 32 Major Cities. Sci. Total Environ. 2014, 488, 136–145. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, Y.; Woodcock, C.E.; Olofsson, P.; Vogelmann, J.E.; Holden, C.; Wang, M.; Dai, S.; Yu, Y. Including Land Cover Change in Analysis of Greenness Trends Using All Available Landsat 5, 7, and 8 Images: A Case Study from Guangzhou, China (2000–2014). Remote Sens. Environ. 2016, 185, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Schneider, A.; Friedl, M.A. Mapping Sub-Pixel Urban Expansion in China Using MODIS and DMSP/OLS Nighttime Lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Xie, D.; Zhao, Y. Improving the Normalized Difference Built-up Index to Map Urban Built-up Areas Using a Semiautomatic Segmentation Approach. Remote Sens. Lett. 2010, 1, 213–221. [Google Scholar] [CrossRef] [Green Version]
Package/Application | Format | CRS 1 | Downloaded Files | Image Boundary |
---|---|---|---|---|
AppEEARS | tif | WGS84 | EVI + quality | Cropped image, according to the contour of the study area. |
MODIS | hdf y tif | WGS84 | EVI | Complete scenes (tiles) |
MODISTools | tif | WGS84 | EVI | Cropped image, according to a bounding box generated from distances, starting from the centroid of the study area. |
MODIStsp | hdf y tif | WGS84 | EVI | Cropped image, according to the contour of the study area. |
RGEE | tif | WGS84 | EVI | Cropped image, according to the contour of the study area. |
RGISTools | hdf y tif | Sinusoidal | EVI | Cropped image, according to the contour of the study area. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campero-Taboada, M.J.; Luquin, E.; Montesino-SanMartin, M.; González-Audícana, M.; Campo-Bescós, M.A. Evaluation of R Tools for Downloading MODIS Images and Their Use in Urban Growth Analysis of the City of Tarija (Bolivia). Remote Sens. 2022, 14, 3404. https://doi.org/10.3390/rs14143404
Campero-Taboada MJ, Luquin E, Montesino-SanMartin M, González-Audícana M, Campo-Bescós MA. Evaluation of R Tools for Downloading MODIS Images and Their Use in Urban Growth Analysis of the City of Tarija (Bolivia). Remote Sensing. 2022; 14(14):3404. https://doi.org/10.3390/rs14143404
Chicago/Turabian StyleCampero-Taboada, Milton J., Eduardo Luquin, Manuel Montesino-SanMartin, María González-Audícana, and Miguel A. Campo-Bescós. 2022. "Evaluation of R Tools for Downloading MODIS Images and Their Use in Urban Growth Analysis of the City of Tarija (Bolivia)" Remote Sensing 14, no. 14: 3404. https://doi.org/10.3390/rs14143404
APA StyleCampero-Taboada, M. J., Luquin, E., Montesino-SanMartin, M., González-Audícana, M., & Campo-Bescós, M. A. (2022). Evaluation of R Tools for Downloading MODIS Images and Their Use in Urban Growth Analysis of the City of Tarija (Bolivia). Remote Sensing, 14(14), 3404. https://doi.org/10.3390/rs14143404