A Fast and Precise Plane Segmentation Framework for Indoor Point Clouds
Abstract
:1. Introduction
2. Methods
2.1. Plane Rough Segmentation Based on Voxels
Algorithm 1 Plane rough segmentation based on voxels |
Input: Output: 1: for do 2: 3: for do 4: do PCA 5: 6: if do 7: do PCA 8: 9: break 10: end if 11: end for 12: 13: end for |
2.2. Precise Segmentation of Plane Based on DBSCAN
Algorithm 2 Plane precise segmentation based on DBSCAN |
input: output: 1: for do 2: 3: do mesh 4: for do 5: if do 6: do mark 7: end if 8: end for 9: do DBSCAN 10: 11: end for |
2.3. Optimization
3. Experimental Process and Results
3.1. 3D LiDAR Point Cloud Acquisition Equipment
3.2. Our Experiment Results in Three Scenes
- Scene 1
- Scene 2
- Scene 3
3.3. Comparison with Other Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zong, W.P.; Li, G.Y.; Li, M.L.; Wang, L.; Li, S.X. A survey of laser scan matching methods. Chin. Opt. 2018, 11, 914–930. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, H.; Wu, Z.; Zhang, C.; Zheng, Y.; Tang, T. A survey of LiDAR and camera fusion enhancement. Procedia Comput. Sci. 2021, 183, 579–588. [Google Scholar] [CrossRef]
- Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021, 68, 161–191. [Google Scholar] [CrossRef]
- Benedek, C.; Majdik, A.; Nagy, B.; Rozsa, Z.; Sziranyi, T. Positioning and perception in LIDAR point clouds. Digit. Signal Process. 2021, 119, 103193. [Google Scholar] [CrossRef]
- Zamanakos, G.; Tsochatzidis, L.; Amanatiadis, A.; Pratikakis, I. A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving. Comput. Graph. 2021, 99, 153–181. [Google Scholar] [CrossRef]
- Lin, Y.F.; Yang, L.J.; Yu, C.Y.; Peng, C.C.; Huang, D.C. Object Recognition and Classification of 2D-SLAM Using Machine Learning and Deep Learning Techniques. In Proceedings of the 2020 International Symposium on Computer, Consumer and Control (IS3C), Taichung City, Taiwan, 13–16 November 2020; pp. 473–476. [Google Scholar] [CrossRef]
- Lee, S.W.; Hsu, C.M.; Lee, M.C.; Fu, Y.T.; Atas, F.; Tsai, A. Fast Point Cloud Feature Extraction for Real-time SLAM. In Proceedings of the 2019 International Automatic Control Conference (CACS), Keelung, Taiwan, 13–16 November 2019; pp. 1–6. [Google Scholar]
- Fan, Y.; Zhang, Q.; Liu, S.; Tang, Y.; Jing, X.; Yao, J.; Han, H. Semantic SLAM with More Accurate Point Cloud Map in Dynamic Environments. IEEE Access 2020, 8, 112237–112252. [Google Scholar] [CrossRef]
- Isa, S.N.M.; Shukor, S.A.A.; Rahim, N.A.; Maarof, I.; Yahya, Z.R.; Zakaria, A.; Abdullah, A.H.; Wong, R. A Review of Data Structure and Filtering in Handling 3D Big Point Cloud Data for Building Preservation. In Proceedings of the 2018 IEEE Conference on Systems, Process and Control (ICSPC), Melaka, Malaysia, 14–15 December 2018. [Google Scholar]
- Kurup, S.; Bhise, A. A Systematic Review of Automated Reconstruction of Indoor Scenes using Point Clouds. In Proceedings of the 2021 International Conference on Image, Video Processing, and Artificial Intelligence, Shanghai, China, 23–24 October 2021. [Google Scholar] [CrossRef]
- Xu, Y.S.; Stilla, U. Toward Building and Civil Infrastructure Reconstruction from Point Clouds: A Review on Data and Key Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2857–2885. [Google Scholar] [CrossRef]
- Wang, R.S.; Peethambaran, J.; Chen, D. LiDAR Point Clouds to 3-D Urban Models: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 606–627. [Google Scholar] [CrossRef]
- Cheng, D.Y.; Zhang, J.C.; Zhao, D.J.; Chen, J.L.; Tian, D. Automatic Extraction of Indoor Structural Information from Point Clouds. Remote Sens. 2021, 13, 4930. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xiao, J.; Wang, Y. Research of Plane Extraction Methods based on Region Growing. In Proceedings of the 2016 International Conference on Virtual Reality and Visualization, Hangzhou, China, 24–26 September 2016; pp. 298–303. [Google Scholar] [CrossRef]
- Leng, X.X.; Xiao, J.; Wang, Y. A multi-scale plane-detection method based on the Hough transform and region growing. Photogramm. Rec. 2016, 31, 166–192. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, J.; Adler, B.; Zhang, H.; Zhang, J. Three-dimensional point cloud plane segmentation in both structured and unstructured environments. Robot. Auton. Syst. 2013, 61, 1641–1652. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. In Readings in Computer Vision; Fischler, M.A., Firschein, O., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1987; pp. 726–740. [Google Scholar]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Gr. Forum 2007, 26, 214–226. [Google Scholar] [CrossRef]
- Ioannou, Y.; Taati, B.; Harrap, R.; Greenspan, M. Difference of Normals as a Multi-scale Operator in Unorganized Point Clouds. In Proceedings of the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland, 13–15 October 2012; pp. 501–508. [Google Scholar]
- Xu, S.; Wang, R.; Wang, H.; Yang, R. Plane Segmentation Based on the Optimal-Vector-Field in LiDAR Point Clouds. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3991–4007. [Google Scholar] [CrossRef] [PubMed]
- Lunkai, Z.; Junguo, L.; Yubin, M. A New Effective Parallel Plane Segmentation Method for Point Cloud Based on Dimension Reduction Correction. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Piscataway, NJ, USA, 22–24 August 2020; pp. 1877–1882. [Google Scholar]
- Cheng, D.Y.; Zhao, D.J.; Zhang, J.C.; Wei, C.S.; Tian, D. PCA-Based Denoising Algorithm for Outdoor Lidar Point Cloud Data. Sensors 2021, 21, 3703. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Kdd 1996, 96, 226–231. [Google Scholar]
- Ram, A.; Sunita, J.; Jalal, A.; Manoj, K. A Density Based Algorithm for Discovering Density Varied Clusters in Large Spatial Databases. Int. J. Comput. Appl. 2010, 3, 1–4. [Google Scholar] [CrossRef]
- Li, P.; Wang, R.S.; Wang, Y.X.; Gao, G. Automated Method of Extracting Urban Roads Based on Region Growing from Mobile Laser Scanning Data. Sensors 2019, 19, 5262. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Gao, Z.; Zhou, G.; Li, S.; Song, L.; Lu, X.; Kang, N. Building Plane Segmentation Based on Point Clouds. Remote Sens. 2021, 14, 95. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, B.; Hu, P.; Scherer, S. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 137, 112–133. [Google Scholar] [CrossRef]
- Zhang, X.M.; Wan, W.G.; Xiao, L.; Ma, J.X. Mean Shift Clustering Segmentation and RANSAC Simplification of Color Point Cloud. In Proceedings of the 2014 International Conference on Audio, Language and Image Processing (Icalip), Shanghai, China, 7–9 July 2014; Volume 1–2, pp. 837–841. [Google Scholar]
- Xu, B.; Jiang, W.S.; Shan, J.; Zhang, J.; Li, L.L. Investigation on the Weighted RANSAC Approaches for Building Roof Plane Segmentation from LiDAR Point Clouds. Remote Sens. 2016, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.N.; Sun, W.; Xiang, T.Y. Line laser point cloud segmentation based on the combination of RANSAC and region growing. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–30 July 2020; pp. 6324–6328. [Google Scholar]
- Xu, D.; Li, F.H.; Wei, H.X. 3D Point Cloud Plane Segmentation Method Based on RANSAC and Support Vector Machine. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 943–948. [Google Scholar]
- Yang, L.N.; Li, Y.C.; Li, X.C.; Meng, Z.Q.; Luo, H.W. Efficient plane extraction using normal estimation and RANSAC from 3D point cloud. Comput. Stand. Interfaces 2022, 82, 103608. [Google Scholar] [CrossRef]
- Xu, Y.; Tong, X.; Stilla, U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry. Autom. Constr. 2021, 126, 103675. [Google Scholar] [CrossRef]
- Wei, P.C.; Yan, L.; Xie, H.; Huang, M. Automatic coarse registration of point clouds using plane contour shape descriptor and topological graph voting. Autom. Constr. 2022, 134, 104055. [Google Scholar] [CrossRef]
- Huang, M.; Wei, P.C.; Liu, X.L. An Efficient Encoding Voxel-Based Segmentation (EVBS) Algorithm Based on Fast Adjacent Voxel Search for Point Cloud Plane Segmentation. Remote Sens. 2019, 11, 2727. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ye, Z.; Huang, R.; Hoegner, L.; Stilla, U. Robust segmentation and localization of structural planes from photogrammetric point clouds in construction sites. Autom. Constr. 2020, 117, 103206. [Google Scholar] [CrossRef]
- Lee, H.; Jung, J. Clustering-Based Plane Segmentation Neural Network for Urban Scene Modeling. Sensors 2021, 21, 8382. [Google Scholar] [CrossRef]
- Saglam, A.; Makineci, H.B.; Baykan, N.A.; Baykan, O.K. Boundary constrained voxel segmentation for 3D point clouds using local geometric differences. Expert Syst. Appl. 2020, 157, 113439. [Google Scholar] [CrossRef]
- Vo, A.V.; Linh, T.H.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. Isprs J. Photogramm. Remote Sens. 2015, 104, 88–100. [Google Scholar] [CrossRef]
- Czerniawski, T.; Sankaran, B.; Nahangi, M.; Haas, C.; Leite, F. 6D DBSCAN-based segmentation of building point clouds for planar object classification. Autom. Constr. 2018, 88, 44–58. [Google Scholar] [CrossRef]
- Chen, H.; Liang, M.; Liu, W.; Wang, W.; Liu, P.X. An approach to boundary detection for 3D point clouds based on DBSCAN clustering. Pattern Recognit. 2022, 124, 108431. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
Plane Number | Rough Segmentation | Precise Segmentation |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 |
Number of Scenes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Scene 1 | 20 | 0.2 | 0.4 | 100 | 50 | 2 | 8 | 20 | 0.3 |
Scene 2 | 20 | 0.1 | 0.5 | 400 | 50 | 2 | 10 | 20 | 0.3 |
Scene 3 | 20 | 0.2 | 0.8 | 150 | 150 | 1.5 | 6 | 25 | 0.25 |
METHOD | T | TP | FP | FN | IoU | ER |
---|---|---|---|---|---|---|
RG | 63.5465 s | 4 | 0 | 1 | 0.8000 | 0.2000 |
RANSAC | 101.8499 s | 1 | 0 | 4 | 0.2000 | 0.8000 |
NKNN | 84.2474 s | 1 | 0 | 4 | 0.2000 | 0.8000 |
DoN | 66.2764 s | 1 | 0 | 4 | 0.2000 | 0.8000 |
Ours | 16.2082 s | 5 | 0 | 0 | 1.0000 | 0.0000 |
METHOD | T | TP | FP | FN | IoU | ER |
---|---|---|---|---|---|---|
RG | 391.3039 s | 14 | 0 | 8 | 0.6364 | 0.3636 |
RANSAC | 224.3024 s | 1 | 0 | 21 | 0.0455 | 0.9545 |
NKNN | 169.0449 s | 10 | 0 | 12 | 0.4545 | 0.5455 |
DoN | 155.3330 s | 7 | 0 | 15 | 0.3182 | 0.6818 |
Ours | 116.4729 s | 18 | 0 | 4 | 0.8182 | 0.1818 |
METHOD | T | TP | FP | FN | IoU | ER |
---|---|---|---|---|---|---|
RG | 476.8546 s | 15 | 0 | 11 | 0.5769 | 0.4231 |
RANSAC | 459.1439 s | 3 | 0 | 24 | 0.1111 | 0.8882 |
NKNN | 288.8921 s | 6 | 0 | 21 | 0.2222 | 0.7778 |
DoN | 241.1156 s | 7 | 0 | 20 | 0.2593 | 0.7407 |
Ours | 152.0937 s | 21 | 1 | 5 | 0.7778 | 0.2222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Zhao, D.; Cheng, D.; Zhang, J.; Tian, D. A Fast and Precise Plane Segmentation Framework for Indoor Point Clouds. Remote Sens. 2022, 14, 3519. https://doi.org/10.3390/rs14153519
Zhong Y, Zhao D, Cheng D, Zhang J, Tian D. A Fast and Precise Plane Segmentation Framework for Indoor Point Clouds. Remote Sensing. 2022; 14(15):3519. https://doi.org/10.3390/rs14153519
Chicago/Turabian StyleZhong, Yu, Dangjun Zhao, Dongyang Cheng, Junchao Zhang, and Di Tian. 2022. "A Fast and Precise Plane Segmentation Framework for Indoor Point Clouds" Remote Sensing 14, no. 15: 3519. https://doi.org/10.3390/rs14153519
APA StyleZhong, Y., Zhao, D., Cheng, D., Zhang, J., & Tian, D. (2022). A Fast and Precise Plane Segmentation Framework for Indoor Point Clouds. Remote Sensing, 14(15), 3519. https://doi.org/10.3390/rs14153519