Machine Learning to Identify Three Types of Oceanic Fronts Associated with the Changjiang Diluted Water in the East China Sea between 1997 and 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Satellite Data
2.1.2. Observation Data
2.2. MPNN Model for SSS Estimation
3. Results
3.1. CDW Front Based on SSS, Chl, and SST
3.2. CDW Front Based on Surface Density
3.3. CDW Front for Nutrients’ Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, X.; Bai, Y.; Pan, D.; Chen, C.T.; Cheng, Q.; Wang, D.; Gong, F. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998–2011). Biogeosciences 2013, 10, 4721–4739. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; He, X.; Pan, D.; Chen, C.T.A.; Kang, Y.; Chen, X.; Cai, W.J. Summertime Changjiang River plume variation during 1998–2010. J. Geophys. Res. Ocean. 2014, 119, 6238–6257. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, C.; Yang, G.P.; Gao, X.C.; Zhou, L.M. Variation and reactivity of organic matter in the surface sediments of the Changjiang Estuary and its adjacent East China Sea. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005765. [Google Scholar] [CrossRef]
- Kim, H.C.; Yamaguchi, H.; Yoo, S.; Zhu, J.; Okamura, K.; Kiyomoto, Y.; Tanaka, K.; Kim, S.W.; Park, T.; Ishizaka, J. Distribution of Changjiang diluted water detected by satellite chlorophyll-a and its interannual variation during 1998–2007. J. Oceanogr. 2009, 65, 129–135. [Google Scholar] [CrossRef]
- Kim, D.W.; Park, Y.J.; Jeong, J.Y.; Jo, Y.H. Estimation of Hourly Sea Surface Salinity in the East China Sea Using Geostationary Ocean Color Imager Measurements. Remote Sens. 2020, 12, 755. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.; Kim, S.H.; Jo, Y.H. A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea. Korean J. Remote Sens. 2021, 37, 1307–1315. (In Korean) [Google Scholar]
- Geiger, E.F.; Grossi, M.D.; Trembanis, A.C.; Kohut, J.T.; Oliver, M.J. Satellite-derived coastal ocean and estuarine salinity in the Mid-Atlantic. Cont. Shelf Res. 2013, 63, S235–S242. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, C. Estimating Sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements. Remote Sens. Environ. 2017, 201, 115–132. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, S. The composition and bioavailability of phosphorus transport through the Changjiang (Yangtze) River during the 1998 food. Biogeochemistry 2003, 65, 179–194. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.M.; Ren, J.L.; Wu, Y.; Zhang, G.L. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr. 2007, 74, 449–478. [Google Scholar] [CrossRef]
- Gao, L.; Li, D.; Ishizaka, J.; Zhang, Y.; Zong, H.; Guo, L. Nutrient dynamics across the river-sea interface in the Changjiang (Yangtze River) estuary—East China Sea region. Limnol. Oceanogr. 2015, 60, 2207–2221. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Du, J.; Zhang, X.; Su, N.; Li, J. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955−2008). Environ. Sci. Technol. 2011, 45, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.K.; Kim, G.; Hwang, J.; Lim, W.; Park, J.W.; Kim, T.H. Significant and conservative long-range transport of dissolved organic nutrients in the Changjiang diluted water. Sci Rep 2018, 8, 12768. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Grant, M.; Brewin, R.J.W.; Brockmann, C.; Brotas, V.; Chuprin, A. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 3.1 Data; Centre for Environmental Data Analysis: Oxfordshire, UK, 2018. [Google Scholar]
- Mélin, F.; Sclep, G. Band shifting for ocean color multi-spectral reflectance data. Opt. Express 2015, 23, 2262–2279. [Google Scholar] [CrossRef]
- Su, Y.-s.; Weng, X.-c. Water masses in China seas. In Oceanology of China Seas; Springer: Dordrecht, The Netherlands, 1994; pp. 3–16. [Google Scholar]
- Chang, P.H.; Isobe, A. A numerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res. Ocean. 2003, 108, 3299. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Wang, S.L. Carbon, alkalinity, and nutrient budgets on the East China Sea. J. Geophys. Res. 1999, 104, 20675–20686. [Google Scholar] [CrossRef]
- Moon, J.H.; Hirose, N.; Yoon, J.H.; Pang, I.C. Offshore detachment process of the low-salinity water around Changjiang Bank in the East China Sea. J. Phys. Oceanogr. 2010, 40, 1035–1053. [Google Scholar] [CrossRef]
- Li, H.M.; Tang, H.J.; Shi, X.Y.; Zhang, C.S.; Wang, X.L. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms. Harmful Algae 2014, 39, 92–101. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, J.; Zhou, F.; Shou, L.; Chen, Q.; Tao, B.; Wang, K. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Cont. Shelf Res. 2015, 101, 71–84. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Yu, R.C.; Sun, C.; Feng, M.; Zhou, M.J. Impacts of Changjiang River discharge and Kuroshio intrusion on the diatom and dinoflagellate blooms in the East China Sea. J. Geophys. Res. Ocean. 2019, 124, 5244–5257. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Yu, R.C.; Zhou, M.J. Resolving the complex relationship between harmful algal blooms and environmental factors in the coastal waters adjacent to the Changjiang River estuary. Harmful Algae 2017, 62, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, C.; Liu, J.; Ma, R.; Zhang, Y.; Zhang, S. Noctiluca blooms in the East China Sea bounded by ocean fronts. Harmful Algae 2022, 112, 102172. [Google Scholar] [CrossRef] [PubMed]
- Belkin, I.M. Remote sensing of ocean fronts in marine ecology and fisheries. Remote Sens. 2021, 13, 883. [Google Scholar] [CrossRef]
Year | ECS a | SSK b | YC c | ES d |
---|---|---|---|---|
1998 | 26 | 122 | 77 | 34 |
1999 | 22 | 108 | 68 | 19 |
2000 | 32 | 105 | 68 | 20 |
2001 | 33 | 102 | 68 | 20 |
2002 | 32 | 98 | 67 | 18 |
2003 | 61 | 108 | 68 | 20 |
2004 | 32 | 108 | 68 | 20 |
2005 | 32 | 108 | 69 | 20 |
2006 | 33 | 108 | 68 | 20 |
2007 | 32 | 110 | 68 | 20 |
2008 | 32 | 110 | 68 | 20 |
2009 | 32 | 108 | 68 | 20 |
2010 | 32 | 108 | 48 | 20 |
2011 | 32 | 108 | 68 | 20 |
2012 | 32 | 108 | 68 | 20 |
2013 | 32 | 108 | 68 | 20 |
2014 | 32 | 108 | 68 | 20 |
2015 | 34 | 108 | 68 | 20 |
2016 | 32 | 108 | 68 | 20 |
2017 | 32 | 108 | 68 | 20 |
2018 | 32 | 108 | 68 | 20 |
2019 | 32 | 108 | 68 | 20 |
2020 | 32 | 108 | 68 | 20 |
2021 | 32 | 108 | 68 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-W.; Kim, S.-H.; Jo, Y.-H. Machine Learning to Identify Three Types of Oceanic Fronts Associated with the Changjiang Diluted Water in the East China Sea between 1997 and 2021. Remote Sens. 2022, 14, 3574. https://doi.org/10.3390/rs14153574
Kim D-W, Kim S-H, Jo Y-H. Machine Learning to Identify Three Types of Oceanic Fronts Associated with the Changjiang Diluted Water in the East China Sea between 1997 and 2021. Remote Sensing. 2022; 14(15):3574. https://doi.org/10.3390/rs14153574
Chicago/Turabian StyleKim, Dae-Won, So-Hyun Kim, and Young-Heon Jo. 2022. "Machine Learning to Identify Three Types of Oceanic Fronts Associated with the Changjiang Diluted Water in the East China Sea between 1997 and 2021" Remote Sensing 14, no. 15: 3574. https://doi.org/10.3390/rs14153574
APA StyleKim, D. -W., Kim, S. -H., & Jo, Y. -H. (2022). Machine Learning to Identify Three Types of Oceanic Fronts Associated with the Changjiang Diluted Water in the East China Sea between 1997 and 2021. Remote Sensing, 14(15), 3574. https://doi.org/10.3390/rs14153574