Complex-Valued Multi-Scale Fully Convolutional Network with Stacked-Dilated Convolution for PolSAR Image Classification
Abstract
:1. Introduction
- (1)
- Considering the importance of phase information of PolSAR image and the influence of receptive fields size, the standard convolutions in the FCN model are replaced by stacked-dilated convolutions with different dilation rates in a complex-valued domain. This allows each pixel to have several receptive fields and to capture multi-scale features.
- (2)
- To avoid the calculation burden caused by stacked multiple dilated convolutions, the sharing-weights strategy is adopted in each CSDC layer.
- (3)
- Considering the problem of lacking labeled samples of PolSAR images, the encoder–decoder structure of the FCN model has been reconstructed with our method.
2. Representation of PolSAR Images
3. Related Work
3.1. Dilated Convolution
3.2. Fully Convolution Network
4. Methodology
4.1. Complex-Valued Dilated Convolution
4.2. Complex-Valued Stacked Dilated Convolution
4.3. Complex-Valued Stacked Dilated Fully Convolutional Network
4.4. The Procedure of Network Training
5. Experimental Results and Discussion
5.1. Introduction to the Datase
5.1.1. Xi’an Dataset
5.1.2. Oberpfaffenhofen Dataset
5.1.3. San Francisco Dataset
5.2. Parameter Setting
5.3. Classification Results
5.3.1. Results for the Xi’an Dataset
5.3.2. Results of Oberpfaffenhofen Dataset
5.3.3. Results of San Francisco Dataset
5.3.4. Accuracy Boxplot
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krogager, E. New decomposition of the radar target scattering matrix. Electron. Lett. 2002, 26, 1525–1527. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geo. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Chen, Q.; Yang, S.; Liu, X. Superpixel-Based Classification Using K Distribution and Spatial Context for Polarimetric SAR Images. Remote Sens. 2016, 8, 619. [Google Scholar] [CrossRef] [Green Version]
- Huynen, J.R. Phenomenological Theory of Radar Targets. Electromagn. Scatt. 1978, 653–712. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Grunes, M.R.; Ainsworth, T.L.; Pottier, E.; Krogager, E.; Boerner, W.M. Quantitative comparison of classification capability: Fully-polarimetric versus partially polarimetric SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Zhang, L.; Wang, X.; Li, M.; Moon, W.M. Classification of fully polarimetric SAR images based on ensemble learning and feature integration. In Proceedings of the Geoscience and Remote Sensing Symposium, Quebec City, QC, USA, 13–18 July 2014; pp. 2758–2761. [Google Scholar]
- Fukuda, S.; Hirosawa, H. Support vector machine classification of land cover: Application to polarimetric SAR data. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, 9–13 July 2002. [Google Scholar]
- Okwuashi, O.; Ndehedehe, C.E.; Olayinka, D.N.; Eyoh, A.; Attai, H. Deep support vector machine for PolSAR image classification. Int. J. Remote Sens. 2021, 42, 6502–6540. [Google Scholar] [CrossRef]
- Liu, W.; Yang, J.; Li, P.; Han, Y.; Zhao, J.; Shi, H. A Novel Object-Based Supervised Classification Method with Active Learning and Random Forest for PolSAR Imagery. Remote Sens. 2018, 10, 1092. [Google Scholar] [CrossRef] [Green Version]
- Hong, F.; Kong, Y. Random Forest Fusion Classification of Remote Sensing PolSAR and Optical Image Based on LASSO and IM Factor. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 5048–5051. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Kingsbury, B. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Yang, B.; Liu, H.; Li, X. Learning Deep Direct-Path Relative Transfer Function for Binaural Sound Source Localization. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 3491–3503. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Wang, G. Recent Advances in Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Cireşan, D.; Meier, U.; Schmidhuber, J. Multi-column Deep Neural Networks for Image Classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Garg, R.; Kumar, A.; Bansal, N.; Prateek, M.; Kumar, S. Semantic segmentation of PolSAR image data using advanced deep learning model. Sci. Rep. 2021, 11, 15365. [Google Scholar] [CrossRef] [PubMed]
- Protopapadakis, E.; Voulodimos, A.; Doulamis, A.; Doulamis, N.; Dres, D.; Bimpas, M. Stacked autoencoders for outlier detection in over-the-horizon radar signals. Comput. Intell. Neurosci. 2017, 2017, 5891417. [Google Scholar] [CrossRef] [PubMed]
- Volpi, M.; Tuia, D. Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, PP, 881–893. [Google Scholar]
- Jiao, L.; Hou, B.; Yang, S.; Liu, F. POL-SAR Image Classification Based on Wishart DBN and Local Spatial Information. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3292–3308. [Google Scholar]
- Xie, W.; Xie, Z.; Zhao, F.; Ren, B. POLSAR image classification via Clustering-WAE classification model. IEEE Access 2018, 6, 40041–40049. [Google Scholar] [CrossRef]
- Xie, W.; Jiao, L.; Hou, B.; Ma, W.; Zhao, J.; Zhang, S.; Liu, F. POLSAR Image Classification via Wishart-AE Model or Wishart-CAE Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3604–3615. [Google Scholar] [CrossRef]
- Xie, W.; Ma, G.; Hua, W.; Zhao, F. Complex-Valued Wishart Stacked Auto-Encoder Network for Polsar Image Classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3193–3196. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, L.; Ma, W.; Duan, Y.; Zhang, D. PolSAR image classification based on multi-scale stacked sparse autoencoder. Neurocomputing 2019, 351, 167–179. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Jiao, L.; Chen, Y.; Shang, R. Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification. Swarm Evol. Comput. 2021, 60, 100794. [Google Scholar] [CrossRef]
- Hua, W.; Wang, X.; Zhang, C.; Jin, X. Attention-Based Multiscale Sequential Network for PolSAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Bi, H.; Sun, J.; Xu, Z. A graph-based semisupervised deep learning model for PolSAR image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2116–2132. [Google Scholar] [CrossRef]
- Ren, S.; Zhou, F. Semi-Supervised Classification for PolSAR Data With Multi-Scale Evolving Weighted Graph Convolutional Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2911–2927. [Google Scholar] [CrossRef]
- Nie, W.; Huang, K.; Yang, J.; Li, P. A Deep Reinforcement Learning-Based Framework for PolSAR Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, F.; Xiang, D.; Yin, Q.; Zhou, Y.; Wang, W. PolSAR Image Land Cover Classification Based on Hierarchical Capsule Network. Remote Sens. 2021, 13, 3132. [Google Scholar] [CrossRef]
- Chen, S.; Tao, C. PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jiao, L.; Guo, Y.; Liang, X.; Li, L.; Yang, S.; Qian, X. Polarimetric Multipath Convolutional Neural Network for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Geng, J.; Deng, X.; Ma, X.; Jiang, W. Transfer learning for SAR image classification via deep joint distribution adaptation networks. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5377–5392. [Google Scholar] [CrossRef]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep transfer learning for few-shot SAR image classification. Remote Sens. 2019, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Dumitru, C.O.; Pan, Z.; Lei, B.; Datcu, M. Classification of large-scale high-resolution SAR images with deep transfer learning. IEEE Geosci. Remote Sens. Lett. 2020, 18, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Li, H.; Li, X.; Guo, H.; Zhang, L. PolSAR image semantic segmentation based on deep transfer learning—Realizing smooth classification with small training sets. IEEE Geosci. Remote Sens. Lett. 2019, 16, 977–981. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Liu, G.; Jiao, L. A Novel Deep Fully Convolutional Network for PolSAR Image Classification. Remote Sens. 2018, 10, 1984. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, Y.; Jiao, L.; Peng, C.; Zhang, X.; Shang, R. Adversarial Reconstruction-Classification Networks for PolSAR Image Classification. Remote Sens. 2019, 11, 415. [Google Scholar] [CrossRef] [Green Version]
- Mohammadimanesh, F.; Salehi, B.; Mandianpari, M.; Gill, E.; Molinier, M. A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. ISPRS J. Photogramm. Remote Sens. 2019, 151, 223–236. [Google Scholar] [CrossRef]
- He, C.; Tu, M.; Xiong, D.; Liao, M. Nonlinear manifold learning integrated with fully convolutional networks for polSAR image classification. Remote Sens. 2020, 12, 655. [Google Scholar] [CrossRef] [Green Version]
- Mullissa, A.G.; Persello, C.; Stein, A. PolSARNet: A Deep Fully Convolutional Network for Polarimetric SAR Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5300–5309. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Y.; Zhang, P.; Liang, W.; Li, M. Pixel-Wise PolSAR Image Classification via a Novel Complex-Valued Deep Fully Convolutional Network. Remote Sens. 2019, 11, 2653. [Google Scholar] [CrossRef] [Green Version]
- Mullissa, A.G.; Persello, C.; Reiche, J. Despeckling Polarimetric SAR Data Using a Multistream Complex-Valued Fully Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Zhao, F.; Tian, M.; Xie, W.; Liu, H. A New Parallel Dual-Channel Fully Convolutional Network via Semi-Supervised FCM for PolSAR Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4493–4505. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Elachi, C. Radar Polarimetry for Geoscience Applications. Geocarto Int. 1990, 5, 376. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R. Feature Classification Using Multi-look Polarimetric SAR Imagery. In Proceedings of the International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; pp. 77–79. [Google Scholar]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Tseng, K.K.; Sun, H.; Liu, J.; Li, J.; Ip, W.H. Image semantic segmentation with an improved fully convolutional network. Soft Comput. 2020, 24, 8253–8273. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, Y.; Wei, X.; Wang, H. An Improved Image Semantic Segmentation Method Based on Superpixels and Conditional Random Fields. Appl. Sci. 2018, 8, 837. [Google Scholar] [CrossRef] [Green Version]
- Chiheb, T.; Olexa, B.; Dmitriy, S.; Sandeep, S.; João Felipe, S.; Soroush, M.; Negar, R.; Yoshua, B.; Christopher, J.P. Deep Complex Networks. arXiv 2017, arXiv:1705.09792. [Google Scholar]
- Schuster, R.; Wasenmüller, O.; Unger, C.; Stricker, D. SDC - Stacked Dilated Convolution: A Unified Descriptor Network for Dense Matching Tasks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding Convolution for Semantic Segmentation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Fisher, Y.; Vladlen, K.; Thomas, A.F. Dilated Residual Networks. arXiv 2017, arXiv:1705.09914. [Google Scholar]
- Wang, S.; Hu, S.Y.; Cheah, E.; Wang, X.; Wang, J.; Chen, L.; Baikpour, M.; Ozturk, A.; Li, Q.; Chou, S.H. U-Net Using Stacked Dilated Convolutions for Medical Image Segmentation 2020. arXiv 2020, arXiv:2004.03466. [Google Scholar]
- Gang, H.; Xianlin, L. Semantic segmentation of polarimetric synthetic aperture radar images based on deep learning. Scence Surv. Mapp. 2019, 1168, 042008. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
Methods | SVM | Wishart | Bagging | CNN | SFCN | CVFCN | Unet | CV-SDFCN |
---|---|---|---|---|---|---|---|---|
Grass | 89.68 | 84.01 | 88.32 | 94.29 | 92.17 | 96.25 | 97.84 | 97.91 |
Urban | 86.03 | 81.87 | 88.27 | 94.98 | 94.96 | 94.53 | 98.08 | 96.49 |
Water | 88.83 | 94.37 | 87.93 | 92.14 | 89.33 | 89.11 | 96.68 | 95.38 |
OA | 88.26 | 84.81 | 88.24 | 94.20 | 92.73 | 94.57 | 97.75 | 97.01 |
Kappa | 82.27 | 80.13 | 82.26 | 90.42 | 88.20 | 89.88 | 96.28 | 94.83 |
MIoU | – | – | – | 88.62 | 85.69 | 87.69 | 95.11 | 93.41 |
Methods | SVM | Wishart | Bagging | CNN | SFCN | CVFCN | Unet | CV-SDFCN |
---|---|---|---|---|---|---|---|---|
Built-up Areas | 80.01 | 74.93 | 87.03 | 87.62 | 91.11 | 94.74 | 95.57 | 96.31 |
Wood land | 88.87 | 73.32 | 86.91 | 95.15 | 95.40 | 93.99 | 97.32 | 97.57 |
Open Areas | 87.74 | 89.77 | 94.98 | 84.45 | 96.63 | 97.84 | 91.80 | 99.12 |
OA | 86.42 | 83.53 | 90.03 | 91.11 | 94.95 | 96.34 | 95.59 | 98.13 |
Kappa | 78.31 | 67.59 | 81.31 | 84.79 | 91.56 | 93.28 | 92.62 | 96.50 |
MIoU | – | – | – | 80.42 | 89.39 | 91.91 | 90.83 | 95.45 |
Methods | SVM | Wishart | Bagging | CNN | SFCN | CVFCN | Unet | CV-SDFCN |
---|---|---|---|---|---|---|---|---|
Developed areas | 81.71 | 60.12 | 78.74 | 80.96 | 91.05 | 90.81 | 89.89 | 96.28 |
Water | 99.47 | 95.47 | 99.53 | 98.98 | 99.65 | 99.61 | 99.78 | 99.81 |
High-density urban | 77.09 | 50.23 | 76.43 | 79.36 | 91.03 | 90.38 | 94.21 | 97.99 |
Low-density areas | 74.48 | 72.88 | 76.56 | 79.05 | 94.18 | 93.42 | 93.10 | 97.65 |
Vegetation | 81.17 | 91.98 | 83.40 | 90.51 | 90.58 | 90.59 | 94.06 | 95.96 |
OA | 88.29 | 82.37 | 88.83 | 90.25 | 95.21 | 95.54 | 97.20 | 98.56 |
Kappa | 78.48 | 67.67 | 78.67 | 85.69 | 91.70 | 91.05 | 95.14 | 96.87 |
MIoU | – | – | – | 74.77 | 87.70 | 87.08 | 88.26 | 95.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Jiao, L.; Hua, W. Complex-Valued Multi-Scale Fully Convolutional Network with Stacked-Dilated Convolution for PolSAR Image Classification. Remote Sens. 2022, 14, 3737. https://doi.org/10.3390/rs14153737
Xie W, Jiao L, Hua W. Complex-Valued Multi-Scale Fully Convolutional Network with Stacked-Dilated Convolution for PolSAR Image Classification. Remote Sensing. 2022; 14(15):3737. https://doi.org/10.3390/rs14153737
Chicago/Turabian StyleXie, Wen, Licheng Jiao, and Wenqiang Hua. 2022. "Complex-Valued Multi-Scale Fully Convolutional Network with Stacked-Dilated Convolution for PolSAR Image Classification" Remote Sensing 14, no. 15: 3737. https://doi.org/10.3390/rs14153737
APA StyleXie, W., Jiao, L., & Hua, W. (2022). Complex-Valued Multi-Scale Fully Convolutional Network with Stacked-Dilated Convolution for PolSAR Image Classification. Remote Sensing, 14(15), 3737. https://doi.org/10.3390/rs14153737