Many-Objective RadarCom Signal Design via NSGA-II Genetic Algorithm Implementation and Simulation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. RadarCom Signal Construction
2.2. Multiple-Objective Setup
2.2.1. Peak-to-Average Power Ratio (PAPR)
2.2.2. Peak-to-Sidelobe Ratio (PSLR)
2.2.3. Bit Error Rate (BER)
2.2.4. Probability of Correct Detection/Identification ()
2.2.5. Low Probability of Intercept (LPI)
2.3. Multi-Objective Cost Function Setup
3. Many-Objective Optimization Using a Genetic Algorithm
4. Simulation Results and Analysis
4.1. Radar Priority (Red Traces)
4.2. Communication Priority (Black Traces)
4.3. All-Equal (Blue Traces)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sturm, C.; Wiesbeck, W. Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing. Proc. IEEE 2011, 99, 1236–1259. [Google Scholar] [CrossRef]
- McCormick, P.M.; Blunt, S.D.; Metcalf, J.G. Simultaneous radar and communication emissions from a common aperture, part I: Theory. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 1685–1690. [Google Scholar]
- McCormick, P.M.; Blunt, S.D.; Duly, A.J.; Metcalf, J.G. Simultaneous radar and communication emissions from a common aperture, part II: Experimentation. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 1697–1702. [Google Scholar]
- Liu, F.; Masouros, C.; Petropulu, A.P.; Griffiths, H.; Hanzo, L. Joint radar and communication design: 331 Applications, state-of-the-art, and the road ahead. IEEE Trans. Commun. 2020, 68, 3834–3862. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Wang, F.; Salous, S.; Zhou, J. Low Probability of Intercept-Based Optimal OFDM Waveform Design Strategy for an Integrated Radar and Communications System. IEEE Access 2018, 6, 57689–57699. [Google Scholar] [CrossRef]
- Keskin, M.F.; Tigrek, R.F.; Aydogdu, C.; Lampel, F.; Wymeersch, H.; Alvarado, A.; Willems, F.M. Peak Sidelobe Level Based Waveform Optimization for OFDM Joint Radar-Communications. In Proceedings of the 17th European Radar Conference (EuRAD), Utrecht, The Netherlands, 13–15 January 2021. [Google Scholar] [CrossRef]
- Shi, C.; Wang, F.; Sellathurai, M.; Zhou, J.; Salous, S. Power Minimization-Based Robust OFDM Radar Waveform Design for Radar and Communication Systems in Coexistence. IEEE Trans. Signal Process. 2017, 66, 1316–1330. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Yang, R.; Li, X.; Zuo, J.; Li, D.; Ding, Y. An Optimizing Method of OFDM Radar Communication and Jamming Shared Waveform Based on Improved Greedy Algorithm. IEEE Access 2020, 8, 186462–186473. [Google Scholar] [CrossRef]
- Ramarakula, M.; Ramana, V. Optimization of Polyphase Orthogonal sequences for MIMO Radar Using Genetic Algorithm with Hamming Scan. In Proceedings of the 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–19 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Ding, S.; Tong, N.; Zhang, Y.; Hu, X.; Zhao, X. Cognitive MIMO imaging radar based on Doppler filtering waveform separation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6929–6944. [Google Scholar] [CrossRef]
- Eedara, I.P.; Amin, M.G.; Hoorfar, A. Optimum Code Design Using Genetic Algorithm in Frequency Hopping Dual Function MIMO Radar Communication Systems. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, H.; Yu, J.; Yu, W.; Ben, D. Adaptive waveform design for distributed OFDM MIMO radar system in multi-target scenario. Chin. J. Aeronaut 2018, 31, 567–574. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Tang, G.; Nehorai, A. Multi-objective optimized OFDM radar waveform for target detection in multipath scenarios. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 618–622. [Google Scholar]
- Pang, L.M.; Ishibuchi, H.; Shang, K. NSGA-II with Simple Modification Works Well on a Wide Variety of Many-Objective Problems. IEEE Access 2020, 8, 190240–190250. [Google Scholar] [CrossRef]
- Lellouch, G.; Mishra, A.K.; Inggs, M. Design of OFDM radar pulses using genetic algorithm based techniques. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1953–1966. [Google Scholar] [CrossRef] [Green Version]
- Washington, R.; Bischof, B.; Garmatyuk, D.; Mudaliar, S. Clutter-Masked Waveform Design for LPI/LPD Radarcom Signal Encoding. Sensors 2021, 21, 631. [Google Scholar] [CrossRef] [PubMed]
- Kellett, D.; Garmatyuk, D.; Mudaliar, S.; Condict, N.; Qualls, I. Random sequence encoded waveforms for covert asynchronous communications and radar. IET Radar Sonar Navig. 2019, 13, 1713–1720. [Google Scholar] [CrossRef]
- Mozeson, E.; Levanon, N. Multicarrier radar signals with low peak-to-mean envelope power ratio. IEE Proc.-Radar Sonar Navig. 2003, 150, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Sebt, M.; Sheikhi, A.; Nayebi, M. Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio. IET Radar Sonar Navig. 2009, 3, 122–132. [Google Scholar] [CrossRef]
- Garmatyuk, D.; Simms, M.; Mudaliar, S. UWB Multicarrier Radar Target Scene Identification with 2-D Diversity Utilization and GLRT Refinement. IEEE Sensors Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Mishra, S.; Saha, S.; Mondal, S. Divide and conquer based non-dominated sorting for parallel environment. In Proceedings of the Evolutionary Computation (CEC) 2016 IEEE Congress, Vancouver, BC, Canada, 24–29 July 2016; pp. 4297–4304. [Google Scholar]
- Yu, V.F.; Lin, S.-W.; Lee, W.; Ting, C.-J. A simulated annealing heuristic for the capacitated location routing problem. Comput. Ind. Eng. 2010, 58, 288–299. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3045–3052. [Google Scholar] [CrossRef]
Scenario | PSLR | PAPR | BER | NRMSE | |
---|---|---|---|---|---|
All Equal | 20% | 20% | 20% | 20% | 20% |
Radar | 50% | 40% | 0 | 0 | 10% |
Comm. | 0 | 0 | 10% | 80% | 10% |
Scenario | PSLR, dB | PAPR, dB | BER, % | NRMSE | |
---|---|---|---|---|---|
All Equal | 0.8 | 0.606 | 0.646 | 3.94 | 0.082 |
Radar | 0.9 | 0.283 | 0.963 | 4.10 | 0.025 |
Comm. | 0.8 | 0.495 | 1.33 | 4.19 | 0.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Washington, R.; Garmatyuk, D.; Mudaliar, S.; Narayanan, R.M. Many-Objective RadarCom Signal Design via NSGA-II Genetic Algorithm Implementation and Simulation Analysis. Remote Sens. 2022, 14, 3787. https://doi.org/10.3390/rs14153787
Washington R, Garmatyuk D, Mudaliar S, Narayanan RM. Many-Objective RadarCom Signal Design via NSGA-II Genetic Algorithm Implementation and Simulation Analysis. Remote Sensing. 2022; 14(15):3787. https://doi.org/10.3390/rs14153787
Chicago/Turabian StyleWashington, Richard, Dmitriy Garmatyuk, Saba Mudaliar, and Ram M. Narayanan. 2022. "Many-Objective RadarCom Signal Design via NSGA-II Genetic Algorithm Implementation and Simulation Analysis" Remote Sensing 14, no. 15: 3787. https://doi.org/10.3390/rs14153787
APA StyleWashington, R., Garmatyuk, D., Mudaliar, S., & Narayanan, R. M. (2022). Many-Objective RadarCom Signal Design via NSGA-II Genetic Algorithm Implementation and Simulation Analysis. Remote Sensing, 14(15), 3787. https://doi.org/10.3390/rs14153787