Clustering of Handheld Thermal Camera Images in Volcanic Areas and Temperature Statistics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Handheld Thermal Images
2.2. Program Requirements and Operation
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvari, S.; Lodato, L.; Spampinato, L. Monitoring Active Volcanoes Using a Handheld Thermal Camera. In Thermosense XXVI: Proceedings of SPIE; Burleigh, D.D., Cramer, K.E., Peacock, G.R., Eds.; SPIE: Orlando, FL, USA, 2004; Volume 5405, pp. 199–209. [Google Scholar]
- Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.L.; Patrick, M.R.; Dehn, J.; Burton, M.R.; Andronico, D. Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J. Geophys. Res. Solid Earth. 2005, 110, B02201. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Spampinato, L.; Lodato, L. The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J. Volcanol. Geotherm. Res. 2006, 149, 160–175. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A.J.L.; Spampinato, L.; Boschi, E. The 2007 Stromboli flank eruption: Chronology of the events, and effusion rate measurements from thermal images and satellite data. J. Geophys. Res. Solid Earth 2010, 115, B04201. [Google Scholar] [CrossRef] [Green Version]
- Caputo, T.; Bellucci Sessa, E.; Silvestri, M.; Buongiorno, M.F.; Musacchio, M.; Sansivero, F.; Vilardo, G. Surface Temperature Multiscale Monitoring by Thermal Infrared Satellite and Ground Images at Campi Flegrei Volcanic Area (Italy). Remote Sens. 2019, 11, 1007. [Google Scholar] [CrossRef] [Green Version]
- Caputo, T.; Cusano, P.; Petrosino, S.; Sansivero, F.; Vilardo, G. Spectral analysis of ground thermal image temperatures: What we are learning at Solfatara volcano (Italy). Adv. Geosci. 2020, 52, 55–65. [Google Scholar] [CrossRef]
- Chio, S.H.; Lin, C.H. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan. Sensors 2017, 17, 1649. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on a combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 5. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Maciejewski, A.J.H. Thermal surveys of the Vulcano Fossa fumarole field 1994–1999: Evidence for fumarole migration and sealing. J. Volcanol. Geotherm. Res. 2000, 102, 119–147. [Google Scholar] [CrossRef]
- Harris, A.; Pirie, D.; Horton, K.; Garbeil, H.; Pilger, E.; Ramm, H.; Hoblitt, R.; Thornber, C.; Ripepe, M.; Marchetti, E.; et al. DUCKS: Low cost thermal monitoring units for near-vent deployment. J. Volcanol. Geotherm. Res. 2005, 143, 335–360. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Lodato, L.; Dehn, J.; Spampinato, L. Thermal characterization of the Vulcano fumarole field. Bull. Volcanol. 2009, 71, 441–458. [Google Scholar] [CrossRef]
- Lombardo, V.; Buongiorno, M.F. Lava flow thermal analysis using three infrared bands of remote-sensing imagery: A study case from Mount Etna 2001 eruption. Remote Sens. Environ. 2006, 101, 141–149. [Google Scholar] [CrossRef]
- Marotta, E.; Calvari, S.; Cristaldi, A.; D’Auria, L.; Di Vito, M.A.; Moretti, R.; Peluso, R.; Spampinato, L.; Boschi, E. Reactivation of Stromboli’s summit craters at the end of the 2007 effusive eruption detected by thermal surveys and seismicity. J. Geophys. Res. Solid Earth 2015, 120, 7376–7395. [Google Scholar] [CrossRef]
- Marotta, E.; Peluso, R.; Avino, R.; Belviso, P.; Caliro, S.; Carandente, A.; Chiodini, G.; Macedonio, G.; Avvisati, G.; Marfè, B. Thermal Energy Release Measurement with Thermal Camera: The Case of La Solfatara volcano (Italy). Remote Sens. 2019, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, C. Lava flow cooling estimated from Landsat thematic mapper infrared data: The Lonquimay Eruption (Chile, 1989). J. Geophys. Res. Solid Earth 1991, 96, 21865–21878. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Yirgu, G. Thermal imaging of an active lava lake: Erta ‘Ale volcano, Ethiopia. Int. J. Remote Sens. 2001, 23, 4777–4782. [Google Scholar] [CrossRef]
- Pinkerton, H.; James, M.; Jones, A. Surface temperature measurements of active lava flows on Kīlauea volcano, Hawaii. J. Volcanol. Geotherm. Res. 2002, 113, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Sansivero, F.; Scarpato, G.; Vilardo, G. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater. Ann. Geophys. 2013, 56, 4. [Google Scholar] [CrossRef]
- Sansivero, F.; Vilardo, G. Processing Thermal Infrared Imagery Time-Series from Volcano Permanent Ground-Based Monitoring Network. Latest Methodological Improvements to Characterize Surface Temperatures Behavior of Thermal Anomaly Areas. Remote Sens. 2019, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, G.M.; Burton, M.R. Effects of a volcanic plume on thermal imaging data. Geophys. Res. Lett. 2006, 33, L14311. [Google Scholar] [CrossRef]
- Silvestri, M.; Marotta, E.; Buongiorno, M.F.; Avvisati, G.; Belviso, P.; Bellucci Sessa, E.; Caputo, T.; Longo, V.; De Leo, V.; Teggi, S. Monitoring of Surface Temperature on Parco delle Biancane (Italian Geothermal Area) Using Optical Satellite Data, UAV and Field Campaigns. Remote Sens. 2020, 12, 2018. [Google Scholar] [CrossRef]
- Silvestri, M.; Romaniello, V.; Hook, S.; Musacchio, M.; Teggi, S.; Buongiorno, M.F. First Comparisons of Surface Temperature Estimations between ECOSTRESS, ASTER and Landsat 8 over Italian Volcanic and Geothermal Areas. Remote Sens. 2020, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Lodato, L. Shallow magma transport for the 2002–03 Mt. Etna eruption inferred from thermal infrared surveys. J. Volcanol. Geotherm. Res. 2008, 177, 301–312. [Google Scholar] [CrossRef]
- Spanpinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth-Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Stevenson, J.A.; Varley, N. Fumarole monitoring with a handheld infrared camera: Volcàn de Colima, Mexico, 2006–2007. J. Volc. Geoth. Res. 2008, 177, 911–924. [Google Scholar] [CrossRef]
- Tibaldi, A.; Corti, N.; De Beni, E.; Luca Bonali, F.; Falsaperla, S.; Langer, H.; Neri, M.; Cantarero, M.; Reitane, D.; Fallati, L. Mapping and evaluating kinematics and the stress and strain field at active faults and fissures: A comparison between field and drone data at the NE rift, Mt Etna (Italy). Solid Earth 2021, 12, 801–816. [Google Scholar] [CrossRef]
- Vicari, A.; Ciraudo, A.; Del Negro, C.; Hérault, A.; For-tuna, L. Lava flow simulations using discharge ratesfrom thermal infrared satellite imagery during the 2006 Etna eruption. Nat. Hazards 2009, 50, 539–550. [Google Scholar] [CrossRef]
- Vilardo, G.; Sansivero, F.; Chiodini, G. Long-term TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei (Southern Italy). J. Geophys. Res. Solid Earth 2015, 120, 812–826. [Google Scholar] [CrossRef]
- Zanon, V.; Neri, M.; Pecora, E. Interpretation of data from the monitoring thermal camera of Stromboli volcano (Aeolian Islands, Italy). Geol. Mag. 2009, 146, 591–601. [Google Scholar] [CrossRef]
- Aquino, I.; Augusti, V.; Avino, R.; Bagnato, E.; Bellomo, S.; Bellucci Sessa, E.; Belviso, P.; Benincasa, A.; Berrino, G.; Borgstrom, S.; et al. Il Monitoraggio dei Vulcani Campani—Primo Semestre 2019. Earth-Prints 2021. Available online: http://hdl.handle.net/2122/14589 (accessed on 3 August 2022).
- Aquino, I.; Augusti, V.; Avino, R.; Bagnato, E.; Bellomo, S.; Bellucci Sessa, E.; Belviso, P.; Benincasa, A.; Berrino, G.; Borgstrom, S.; et al. Il Monitoraggio dei Vulcani Campani—Secondo Semestre 2019. Earth-Prints 2021. Available online: http://hdl.handle.net/2122/14820 (accessed on 3 August 2022).
- Peluso, R.; Scarpato, G.; Augusti, V.; Benincasa, A.; Borriello, G.; Cirillo, F.; D’Alessandro, A.; De Cesare, W.; Di Filippo, A.; Martino, C.; et al. Il sistema di acquisizione dati e la sala di monitoraggio. In Il Monitoraggio dei Vulcani Campani—Primo semestre 2020; Castellano, F.B.eM., Ed.; Earth-Prints 2022; pp. 5–8. Available online: http://hdl.handle.net/2122/15424 (accessed on 3 August 2022).
- Marotta, E.; Belviso, P.; Carandente, A.; Nave, R.; Peluso, R. Monitoraggio Termico con Termocamera Mobile e Termocoppia. In Il Monitoraggio dei Vulcani Campani—Primo Semestre 2020; Castellano, F.B.eM., Ed.; Earth-Prints 2022; pp. 30–32, 73–77, 110–115. Available online: http://hdl.handle.net/2122/15424 (accessed on 3 August 2022).
- Thermal Camera. Available online: https://www.imveurope.com/press-releases/thermacam-researcher-v210 (accessed on 3 August 2022).
- Gaudin, D.; Taddeucci, J.; Scarlato, P.; Harris, A.J.L.; Bombrun, M.; Del Bello, E.; Ricci, T. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: The example of Stromboli Volcano (Italy). Bull. Volcanol. 2017, 79, 24. [Google Scholar] [CrossRef]
- Calusi, B.; Andronico, D.; Pecora, E.; Biale, E.; Cerminara, M. PyTirCam-1.0: A Python Model to Manage Thermal Infrared Camera Data. Remote Sens. 2020, 12, 4056. [Google Scholar] [CrossRef]
- Carniel, R.; Guzmán, S.R. Machine Learning in Volcanology: A Review. In Updates in Volcanology—Transdisciplinary Nature of Volcano Science; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Burzynski, A.M.; Anderson, S.W.; Morrison, K.; Patrick, M.R.; Orr, T.; Thelen, W. Lava lake thermal pattern classification using self-organizing maps and relationships to eruption processes at Kīlauea Volcano, Hawaii. In Field Volcanology: A Tribute to the Distinguished Career of Don Swanson; Special Papers of the Geological Society of America 538; Geological Society of America: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Cirillo, F.; Avvisati, G.; Belviso, P.; Marotta, E.; Peluso, R.; Pescione, R. STARTED (StaTistical Analysis clusteRed ThErmal Data) (SW 1.0.1). Zenodo 2022. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Xu, J.; Lange, K. Power k-means clustering. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6921–6931. [Google Scholar]
- Sinaga, K.P.; Yang, M.-S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Peng, D.; Chen, Z.; Fu, J.; Xia, S.; Wen, Q. Fast k-means Clustering Based on the Neighbor Information. In Proceedings of the International Symposium on Electrical, Electronics and Information Engineering, Seoul, Korea, 19–21 February 2021; pp. 551–555. [Google Scholar]
- Khan, K.; Rehman, S.U.; Aziz, K.; Fong, S.; Sarasvady, S. DBSCAN: Past, present and future. In Proceedings of the The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), Bangalore, India, 17–19 February 2014; pp. 232–238. [Google Scholar]
- Kurumalla, S.; Rao, P.S. K-nearest neighbor based dbscan clustering algorithm for image segmentation. J. Theor. Appl. Inf. Technol. 2016, 92, 395. [Google Scholar]
- Bellucci Sessa Eliana, Borriello Giuseppe, & Cirillo Francesca. NAPLES (moNitoring mAps of camPania voLcanoES) (1.0) [Data set]. Zenodo 2022. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirillo, F.; Avvisati, G.; Belviso, P.; Marotta, E.; Peluso, R.; Pescione, R.A. Clustering of Handheld Thermal Camera Images in Volcanic Areas and Temperature Statistics. Remote Sens. 2022, 14, 3789. https://doi.org/10.3390/rs14153789
Cirillo F, Avvisati G, Belviso P, Marotta E, Peluso R, Pescione RA. Clustering of Handheld Thermal Camera Images in Volcanic Areas and Temperature Statistics. Remote Sensing. 2022; 14(15):3789. https://doi.org/10.3390/rs14153789
Chicago/Turabian StyleCirillo, Francesca, Gala Avvisati, Pasquale Belviso, Enrica Marotta, Rosario Peluso, and Romano Antonio Pescione. 2022. "Clustering of Handheld Thermal Camera Images in Volcanic Areas and Temperature Statistics" Remote Sensing 14, no. 15: 3789. https://doi.org/10.3390/rs14153789
APA StyleCirillo, F., Avvisati, G., Belviso, P., Marotta, E., Peluso, R., & Pescione, R. A. (2022). Clustering of Handheld Thermal Camera Images in Volcanic Areas and Temperature Statistics. Remote Sensing, 14(15), 3789. https://doi.org/10.3390/rs14153789