Quantitative Evaluation of Reclamation Intensity Based on Regional Planning Theory and Human–Marine Coordination Since 1974: A Case Study of Shandong, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Definition and Classification of Reclamation Activities
2.3. Data Source
2.4. Quantitative Evaluation of the Reclamation Intensity
2.4.1. Construction of Evaluation Index System
2.4.2. Index Assignment
- (1)
- Structural Scale of Reclamation Index
- (2)
- Spatial Characteristics of Reclamation Index
- (3)
- Coordination of Marine Utilization Index
2.4.3. Calculation of Reclamation Intensity
2.5. Weight Determination
2.5.1. Construction of Judgment Matrix
2.5.2. Calculation of the Index Weight Coefficients
- (1)
- Calculate the product Mi of elements in each row of judgment matrix P.
- (2)
- Calculate the n-th root of Mi.
- (3)
- Calculate eigenvector W = [w1, w2, …, wn] T, wherein each element is the weight coefficient of indicator.
2.5.3. Consistency Check
3. Results
3.1. Evolution Characteristics of Reclamation from 1974 to 2021
3.2. Comprehensive Analysis of RAI
3.3. Analysis of Sub-Indices of the RAI from 1974 to 2021
3.4. Analysis of RAI in Different Cities
4. Discussion
4.1. Impact of Reclamation Activities on Natural Coastline Resources
4.2. Response of Reclamation Activities to Marine Spatial Planning
4.3. Bays: Highlighted Hotspots of Reclamation Activities
4.4. Rationality Analysis of the RAI Evaluation Index System
4.5. Research Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seijo, J.C.; Caddy, J.F. Port location for inshore fleets affects the sustainability of coastal source–sink resources: Implications for spatial management of metapopulations. Fish. Res. 2008, 91, 336–348. [Google Scholar] [CrossRef]
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- Jiang, S.S.; Li, J.M. Exploring the motivation and effect of government-enterprise collusion in the utilization of marine resources: Evidence from China’s coastal areas. Ocean Coast. Manag. 2021, 212, 105822. [Google Scholar] [CrossRef]
- Singh, A. Managing the environmental problem of seawater intrusion in coastal aquifers through simulation–optimization modeling. Ecol. Indic. 2015, 48, 498–504. [Google Scholar] [CrossRef]
- Cordell, J. Social Marginality and Sea Tenure in Bahia: A Sea of Small Boats; Cultural Survival: Cambridge, MA, USA, 1989; pp. 125–151. [Google Scholar]
- Costanza, R.; Andrade, F.; Antunes, P.; den Belt, M.; Boersma, D.; Boesch, D.F.; Catarino, F.; Hanna, S.; Limburg, K.; Low, B.; et al. Principles for Sustainable Governance of the Oceans. Science 1998, 281, 198–199. [Google Scholar] [CrossRef]
- García-Ayllón, S. New Strategies to Improve Co-Management in Enclosed Coastal Seas and Wetlands Subjected to Complex Environments: Socio-Economic Analysis Applied to an International Recovery Success Case Study after an Environmental Crisis. Sustainability 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Bonsignore, M.; Salvagio Manta, D.; Al-Tayeb Sharif, E.A.; D’Agostino, F.; Traina, A.; Quinci, E.M.; Giaramita, L.; Monastero, C.; Benothman, M.; Sprovieri, M. Marine pollution in the Libyan coastal area: Environmental and risk assessment. Mar. Pollut. Bull. 2018, 128, 340–352. [Google Scholar] [CrossRef]
- Fujita, R.; Lynham, J.; Micheli, F.; Feinberg, P.G.; Bourillón, L.; Sáenz-Arroyo, A.; Markham, A.C. Ecomarkets for conservation and sustainable development in the coastal zone. Biol. Rev. 2013, 88, 273–286. [Google Scholar] [CrossRef]
- Scherner, F.; Horta, P.A.; Oliveira, E.; Simonassi, J.C.; Hall-Spencer, J.M.; Chow, F.; Nunes, J.M.C.; Pereira, S. Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar. Pollut. Bull. 2013, 76, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Sesli, F.A. Mapping and monitoring temporal changes for coastline and coastal area by using aerial data images and digital photogrammetry: A case study from Samsun, Turkey. Int. J. Phys. Sci. 2010, 5, 1567–1575. [Google Scholar]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, X.; Ma, Z.; Xu, L.; Porter, J.H. Spatial Dynamics and Zoning of Coastal Land-Use Change along Bohai Bay, China, during 1979–2008. J. Coast. Res. 2012, 28, 1186–1196. [Google Scholar]
- Zhu, G.; Xie, Z.; Xu, X.; Ma, Z.; Wu, Y. The landscape change and theory of orderly reclamation sea based on coastal management in rapid industrialization area in Bohai Bay, China. Ocean. Coast. Manag. 2016, 133, 128–137. [Google Scholar] [CrossRef]
- Islam, M.S.; Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef]
- Forchino, A.; Borja, A.; Brambilla, F.; Rodriguez, J.G.; Muxika, I.; Terova, G.; Saroglia, M. Evaluating the influence of off-shore cage aquaculture on the benthic ecosystem in Alghero Bay (Sardinia, Italy) using AMBI and M-AMBI. Ecol. Indic. 2011, 11, 1112–1122. [Google Scholar] [CrossRef]
- Xu, N.; Gao, Z.; Ning, J. Analysis of the characteristics and causes of coastline variation in the Bohai Rim (1980–2010). Environ. Earth Sci. 2016, 75, 719. [Google Scholar] [CrossRef]
- Kahn, J.G. Coastal Occupation at the GS-1 Site, Cook’s Bay, Mo’orea, Society Islands. J. Pac. Archaeol. 2012, 3, 52–61. [Google Scholar]
- Wu, X.Q.; Gao, M.; Wang, D.; Wang, Y.; Lu, Q.S.; Zhang, Z.D. Framework and practice of integrated coastal zone management in Shandong Province, China. Ocean. Coast. Manag. 2012, 69, 58–67. [Google Scholar] [CrossRef]
- Geng, R.; Liu, X.; Lv, X.; Gao, Z.; Xu, N. Comparing cost-effectiveness of paddy fields and seawalls for coastal protection to reduce economic damage of typhoons in China. Ecosyst. Serv. 2021, 47, 101232. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; Liu, Q.; Wang, Z.; Li, H.; Liu, G. Land reclamation and risk assessment in the coastal zone of China from 2000 to 2010. Reg. Stud. Mar. Sci. 2020, 39, 101422. [Google Scholar] [CrossRef]
- Ma, T.; Li, X.; Bai, J.; Cui, B. Habitat modification in relation to coastal reclamation and its impacts on waterbirds along China’s coast. Glob. Ecol. Conserv. 2019, 17, e00585. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- Xu, N.; Wang, Y.; Huang, C.; Jiang, S.; Jia, M.; Ma, Y. Monitoring coastal reclamation changes across Jiangsu Province during 1984–2019 using landsat data. Mar. Policy 2022, 136, 104887. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuar. Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
- Zhu, X.; Xiang, S. Assessing coastal reclamation suitability based on a fuzzy-AHP comprehensive evaluation framework: A case study of Lianyungang, China. Mar. Pollut. Bull. 2014, 89, 102–111. [Google Scholar]
- Song, D.; Wang, X.H.; Zhu, X.; Bao, X. Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas. Estuar. Coast. Shelf Sci. 2013, 133, 147–160. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Gong, H.; Liu, Y.; Zhang, H.; Chen, H. Impacts of reclamation derived land use changes on ecosystem services in a typical gulf of eastern China: A case study of Hangzhou bay. Ecol. Indic. 2021, 132, 108259. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, N.; Li, Z.; Huang, C. Satellite derived coastal reclamation expansion in China since the 21st century. Glob. Ecol. Conserv. 2021, 30, e01797. [Google Scholar] [CrossRef]
- Yang, M.; Yang, T.; Zhang, L.; Lin, J.; Qin, X.; Liao, M. Spatio-Temporal Characterization of a Reclamation Settlement in the Shanghai Coastal Area with Time Series Analyses of X-, C-, and L-Band SAR Datasets. Remote Sens. 2018, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Yang, W.; Sun, T.; Yang, Z.; Li, M. Effects of seashore reclamation activities on the health of wetland ecosystems: A case study in the Yellow River Delta, China. Ocean. Coast. Manag. 2016, 123, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Lin, C.; Jin, D.; Rao, H.; Jiang, Y.; Liu, Y. Modeling the total allowable area for coastal reclamation: A case study of Xiamen, China. Ocean. Coast. Manag. 2013, 76, 38–44. [Google Scholar] [CrossRef]
- Choi, Y.R. Modernization, Development and Underdevelopment: Reclamation of Korean tidal flats, 1950s–2000s. Ocean. Coast. Manag. 2014, 102, 426–436. [Google Scholar] [CrossRef]
- Bao, J.L.; Gao, S. Environmental characteristics and land-use pattern changes of the Old Huanghe River delta, eastern China, in the sixteenth to twentieth centuries. Sustain. Sci. 2016, 11, 695–709. [Google Scholar] [CrossRef]
- Grip, K.; Blomqvist, S. Marine spatial planning: Coordinating divergent marine interests. Ambio 2021, 50, 1172–1183. [Google Scholar] [CrossRef]
- Hovik, S.; Stokke, K.B. Balancing aquaculture with other coastal interests: A study of regional planning as a tool for ICZM in Norway. Ocean. Coast. Manag. 2007, 50, 887–904. [Google Scholar] [CrossRef]
- Bryant, B.C. The Regional Marine Research-Program (RMRP)—A new approach to marine research planning. Coast. Manag. 1993, 21, 327–332. [Google Scholar] [CrossRef]
- Marcucci, D.J.; Brinkley, J.D.; Jordan, L.M. A Case for Coastal Theory with Lessons from Planning Theory. Coast. Manag. 2012, 40, 401–420. [Google Scholar] [CrossRef]
- Yue, Q.; Zhao, M.; Yu, H.M.; Xu, W.; Ou, L. Total quantity control and intensive management system for reclamation in China. Ocean. Coast. Manag. 2016, 120, 64–69. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Zhang, L.J.; Li, Y.Y. Exploring the Path of Regional Eco-Compensation under the Coordination of Man-land Relationship Perspective. Disaster Adv. 2012, 5, 31–36. [Google Scholar]
- Lin, Y.H.; Huang, F.M.; Zhang, Y.; Wang, Q.; Huang, J.L.; Chen, Q.M.; Xue, X.Z. An Improved Framework of Marine Major Function-Oriented Zoning in Advancing Ecosystem-Based Management. J. Mar. Sci. Eng. 2022, 10, 684. [Google Scholar] [CrossRef]
- Mangi, S.C.; Austen, M.C. Perceptions of stakeholders towards objectives and zoning of marine-protected areas in southern Europe. J. Nat. Conserv. 2008, 16, 271–280. [Google Scholar] [CrossRef]
- Ortiz-Lozano, L.; Espejel, I.; Granados-Barba, A.; Arceo, P. A functional and integrated approach of methods for the management of protected marine areas in the Mexican Coastal Zone. Ocean. Coast. Manag. 2007, 50, 379–391. [Google Scholar] [CrossRef]
- Bremer, S.; Glavovic, B. Exploring the science–policy interface for Integrated Coastal Management in New Zealand. Ocean. Coast. Manag. 2013, 84, 107–118. [Google Scholar] [CrossRef]
- Willsteed, E.A.; Birchenough, S.N.R.; Gill, A.B.; Jude, S. Structuring cumulative effects assessments to support regional and local marine management and planning obligations. Mar. Policy 2018, 98, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.; Fisher, K.; Foley, M.; Greenaway, A.; Hewitt, J.; Le Heron, R.; Mikaere, H.; Ratana, K.; Spiers, R.; Lundquist, C. Navigating collaborative networks and cumulative effects for Sustainable Seas. Environ. Sci. Policy 2018, 83, 22–32. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Walbridge, S. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Zhang, H.; Li, R. Change characters of coastline and tidal flat in the islands with different principle functions in the Zhoushan Archipelago from 1986 to 2017. J. Mar. Sci. 2022, 39, 123–131. [Google Scholar]
- Qiu, L.; Zhang, M.; Zhou, B.; Cui, Y.; Yu, Z.; Liu, T.; Wu, S. Economic and ecological trade-offs of coastal reclamation in the Hangzhou Bay, China. Ecol. Indic. 2021, 125, 107477. [Google Scholar] [CrossRef]
- Sun, F.; Ye, C. Modeling of the Ecological Carrying Index of reclaimed land in coastal city: A sustainable marine ecology perspective. Environ. Res. 2021, 201, 111612. [Google Scholar] [CrossRef]
- Meng, W.; Hu, B.; He, M.; Liu, B.; Mo, X.; Li, H.; Wang, Z.; Zhang, Y. Temporal-spatial variations and driving factors analysis of coastal reclamation in China. Estuar. Coast. Shelf Sci. 2017, 191, 39–49. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; Külvik, M.; Kristiansen, I. European ecological networks and greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spatiotemporal patterns and modifiable areal unit problems of the landscape ecological risk in coastal areas: A case study of the Shandong Peninsula, China. J. Clean. Prod. 2021, 310, 127522. [Google Scholar] [CrossRef]
- Feinman, G.M.; Fang, H.; Nicholas, L.M. Coastal Shandong, China: The longue durée. J. Anthropol. Archaeol. 2019, 55, 101076. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, A.; Zhang, D. Evaluation of resources and environmental carrying capacity and its spatial-temporal dynamic evolution: A case study in Shandong Province, China. Sustain. Cities Soc. 2022, 82, 103916. [Google Scholar] [CrossRef]
- Yu, L.; Wu, X.; Zheng, X.; Zheng, T.; Xin, J.; Walther, M. An index system constructed for ecological stress assessment of the coastal zone: A case study of Shandong, China. J. Environ. Manag. 2019, 232, 499–504. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Shen, C.; Shi, H.; Zheng, W.; Li, F.; Peng, S.; Ding, D. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters. Mar. Pollut. Bull. 2016, 103, 144–150. [Google Scholar] [CrossRef]
- Lu, L.; Qureshi, S.; Li, Q.; Chen, F.; Shu, L. Monitoring and projecting sustainable transitions in urban land use using remote sensing and scenario-based modelling in a coastal megacity. Ocean. Coast. Manag. 2022, 224, 106201. [Google Scholar] [CrossRef]
- State Oceanic Administration. Sea Area Use Classification System; China Standards Press: Beijing, China, 2020. [Google Scholar]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Wilkins, D.E.; Ford, R.L. Nearest neighbor methods applied to dune field organization: The Coral Pink Sand Dunes, Kane County, Utah, USA. Geomorphology 2007, 83, 48–57. [Google Scholar] [CrossRef]
- Fang, Q.; Zhu, S.; Ma, D.; Zhang, L.; Yang, S. How effective is a marine spatial plan: An evaluation case study in China. Ecol. Indic. 2019, 98, 508–514. [Google Scholar] [CrossRef]
- Abdullah Al, M.; Akhtar, A.; Rahman, M.F.; Kamal, A.H.M.; Karim, N.U.; Hassan, M.L. Habitat structure and diversity patterns of seaweeds in the coastal waters of Saint Martin’s Island, Bay of Bengal, Bangladesh. Reg. Stud. Mar. Sci. 2020, 33, 100959. [Google Scholar] [CrossRef]
- Qi, W.; Abel, G.J.; Liu, S. Geographic transformation of China’s internal population migration from 1995 to 2015: Insights from the migration centerline. Appl. Geogr. 2021, 135, 102564. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Landuse change impact on sub-watersheds prioritization by analytical hierarchy process (AHP). Ecol. Inform. 2017, 42, 100–113. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Su, F. Changes in coastline and coastal reclamation in the three most developed areas of China, 1980–2018. Ocean. Coast. Manag. 2021, 204, 105542. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. Catena 2022, 209, 105840. [Google Scholar] [CrossRef]
- Miao, D.; Xue, Z. The current developments and impact of land reclamation control in China. Mar. Policy 2021, 134, 104782. [Google Scholar] [CrossRef]
- Albotoush, R.; Tan Shau-Hwai, A. An authority for marine spatial planning (MSP): A systemic review. Ocean. Coast. Manag. 2021, 205, 105551. [Google Scholar] [CrossRef]
- Finke, G.; Gee, K.; Gxaba, T.; Sorgenfrei, R.; Russo, V.; Pinto, D.; Nsiangango, S.E.; Sousa, L.N.; Braby, R.; Alves, F.L.; et al. Marine Spatial Planning in the Benguela Current Large Marine Ecosystem. Environ. Dev. 2020, 36, 100569. [Google Scholar] [CrossRef] [PubMed]
- Pataki, Z.; Kitsiou, D. Marine Spatial Planning: Assessment of the intensity of conflicting activities in the marine environment of the Aegean Sea. Ocean. Coast. Manag. 2022, 220, 106079. [Google Scholar] [CrossRef]
- Hou, Y.; Xue, X.; Liu, C.; Xin, F.; Lin, Y.; Wang, S. Marine Spatial Planning Scheme evaluation based on the conflict analysis system—A case study in Xiamen, China. Ocean. Coast. Manag. 2022, 221, 106119. [Google Scholar] [CrossRef]
- Zhang, L.J. Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuar. Coast. Shelf Sci. 2004, 61, 25–35. [Google Scholar]
- Yuan, Y.; Jalón-Rojas, I.; Wang, X.H. Response of water-exchange capacity to human interventions in Jiaozhou Bay, China. Estuar. Coast. Shelf Sci. 2021, 249, 107088. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Zhou, Z.; Li, B.; Liu, X.; Yang, L.; Liu, B.; Song, B. Spatio-temporal variation of subtidal macrobenthic fauna and the ecological assessment of Longkou Artificial Island construction in Bohai Sea, China. J. Oceanol. Limnol. 2020, 38, 1811–1824. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Li, F.; Ding, D.; Chen, Z.; Chen, H.; Shen, T.; Wu, Q.; Zhang, C. Change of sea reclamation and the sea-use management policy system in China. Mar. Policy 2020, 115, 103861. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Proville, J.; Zavala-Araiza, D.; Wagner, G. Night-time lights: A global, long term look at links to socio-economic trends. PLoS ONE 2017, 12, e0174610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Nordhaus, W.D. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens. 2019, 11, 1057. [Google Scholar] [CrossRef] [Green Version]
Reclamation Activities | Definitions [61] | Interpretation Signs | Examples |
---|---|---|---|
Enclosed mariculture | Embankment to enclose offshore area for closed or semi-closed mariculture. | Mostly in regular long strips; the embankment is white, and the inside area is dark blue-green. | |
Saltern | Enclosed or infilled area used for salt production, including salt flats, salt pans, etc. | Neatly arranged rectangles with a high density; the color in images is gray-brown or white-green. | |
Fishery infrastructure | Enclosed or infilled area used for breeding important germplasm resources or for fishing boat docking/loading/unloading/sheltering from wind. | Grayish-white piers with long strips extend into the sea, and sometimes culture ponds are distributed nearby. | |
Coastal industrial construction | Enclosed or infilled area used for industrial production, including shipbuilding industry, electric power generation, etc. | Gray-white, with low density of internal buildings, distribution of dome-shaped or block-shaped workshops. | |
Tourism infrastructure | Facilities built to meet the needs of coastal recreational activities. | Mostly gray-white/dark green /blue-black strips along the coast and generally having regular roads and greening. | |
Port | Cargo/passenger terminals for ship docking/loading/unloading/sheltering/maneuvering. | Dark brown or bright white blocks are widely distributed, and the wharf extends into the sea in the form of a large rectangle. | |
Urbanization | Building towns (e.g., industrial parks, urban parks, etc.) through infilling of the offshore area via embanking and filling. | Neatly arranged buildings with a high density; the color in the image is taupe or dark red with shadows caused by high buildings. | |
Others | Enclosed or infilled areas used for other purposes, including coastal protection engineering and reservoirs. | Gray-white strip-shaped dikes on the periphery of non-functional closed or semi-closed waters. | |
Unused infilled reclamation area | Infilled reclamation construction in progress or completed but not developed. | Smooth gray texture, similar to sand. | |
Unused enclosed reclamation area | Enclosed reclamation construction in progress or completed but not developed. | White embankment with dark blue-green interior area but not irregularly arranged in long strips. |
Index Name | Primary Index | Secondary Index | Primary Weight | Secondary Weight | Index Attribute |
---|---|---|---|---|---|
Intensity of reclamation activities | Structural scale of reclamation | Total reclamation scale (TRS) | 0.493 | 0.138 | + |
Reclamation rate (RRT) | 0.301 | + | |||
Infilled reclamation proportion (IRP) | 0.210 | + | |||
Reclamation intensity per unit coastline (CRI) | 0.262 | + | |||
Diversity of reclamation activities (RAD) | 0.089 | + | |||
Spatial characteristics of reclamation | Spatial equilibrium of reclamation (RSE) | 0.196 | 0.413 | − | |
Spatial concentration of reclamation (RSC) | 0.327 | + | |||
Center migration rate of reclamation (RCR) | 0.260 | + | |||
Coordination of marine utilization | Coordination of reclamation activities (RAC) | 0.311 | 0.429 | − | |
Compliance with marine spatial planning (MSC) | 0.230 | − | |||
Coordination of marine ecological protection (MPC) | 0.194 | − | |||
Natural coastline retention rate (NCR) | 0.147 | − |
Coordination Coefficient in RAC (Cii’) | Compliance Coefficient in MSC (Cif) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM | SA | FI | PO | CI | UR | TI | OT | IU | EU | AFZ | PSZ | IUZ | MEZ | TRZ | MCZ | SUZ | MRZ | |
EM | 3 | 1 | 3 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
SA | — | 3 | 2 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 1 |
FI | — | — | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 |
PO | — | — | — | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 1 |
CI | — | — | — | — | 3 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 3 | 2 | 1 | 1 | 1 | 1 |
UR | — | — | — | — | — | 3 | 3 | 3 | 3 | 3 | 1 | 2 | 3 | 2 | 2 | 1 | 2 | 1 |
TI | — | — | — | — | — | — | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 |
OT | — | — | — | — | — | — | — | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 2 |
IU | — | — | — | — | — | — | — | — | 3 | 2 | 1 | 2 | 3 | 1 | 3 | 1 | 1 | 1 |
EU | — | — | — | — | — | — | — | — | — | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 2 | 1 |
1974–1990 | 1990–2000 | 2000–2007 | 2007–2017 | 2017–2021 | |
---|---|---|---|---|---|
Enclosed mariculture | 17.054 | 14.955 | 19.890 | 6.874 | 2.218 |
Saltern | 1.462 | 1.428 | 4.692 | 1.503 | 0 |
Fishery infrastructure | 0.035 | 0.123 | 0.256 | 0.693 | 0.075 |
Coastal industrial construction | 0.372 | 0.321 | 1.002 | 0.655 | 0.222 |
Tourism infrastructure | 0.062 | 0.075 | 0.465 | 0.459 | 0.023 |
Port | 0.110 | 0.171 | 0.286 | 0.800 | 0 |
Urbanization | 0.151 | 0.067 | 0 | 0.263 | 0 |
Others | 0.981 | 0.192 | 0.055 | 0.467 | 0 |
Unused infilled reclamation area | 0.243 | 0.057 | 1.235 | 1.618 | 0.064 |
Unused enclosed reclamation area | 0.784 | 0 | 0.088 | 0 | 0 |
Marine Reserved Zones | Marine Conservation Zones | Minerals and Energies Zones | Tourism and Recreation Zones | Special Utilization Zones | |
---|---|---|---|---|---|
2007 | 4.787 | 2.615 | 0.151 | 0.507 | 0.046 |
2017 | 4.500 | 2.600 | 0.121 | 0.161 | 0.042 |
2021 | 4.498 | 1.878 | 0.035 | 0.084 | 0.042 |
Unit | 1974 | 1990 | 2000 | 2007 | 2017 | 2021 | |
---|---|---|---|---|---|---|---|
Reclamation area in bays | 104 ha | 2.029 | 13.069 | 15.249 | 19.355 | 23.012 | 22.989 |
Total reclamation area in the study area | 104 ha | 3.450 | 21.122 | 27.921 | 37.815 | 46.435 | 46.487 |
Proportion of reclaimed area in bays | % | 58.81 | 61.87 | 54.62 | 51.18 | 49.56 | 49.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Gong, M.; Wu, X.; Wang, Z. Quantitative Evaluation of Reclamation Intensity Based on Regional Planning Theory and Human–Marine Coordination Since 1974: A Case Study of Shandong, China. Remote Sens. 2022, 14, 3822. https://doi.org/10.3390/rs14153822
Liu B, Gong M, Wu X, Wang Z. Quantitative Evaluation of Reclamation Intensity Based on Regional Planning Theory and Human–Marine Coordination Since 1974: A Case Study of Shandong, China. Remote Sensing. 2022; 14(15):3822. https://doi.org/10.3390/rs14153822
Chicago/Turabian StyleLiu, Baijing, Meng Gong, Xiaoqing Wu, and Ziyang Wang. 2022. "Quantitative Evaluation of Reclamation Intensity Based on Regional Planning Theory and Human–Marine Coordination Since 1974: A Case Study of Shandong, China" Remote Sensing 14, no. 15: 3822. https://doi.org/10.3390/rs14153822
APA StyleLiu, B., Gong, M., Wu, X., & Wang, Z. (2022). Quantitative Evaluation of Reclamation Intensity Based on Regional Planning Theory and Human–Marine Coordination Since 1974: A Case Study of Shandong, China. Remote Sensing, 14(15), 3822. https://doi.org/10.3390/rs14153822