Temperature Contributes More than Precipitation to Runoff in the High Mountains of Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. Climate Downscaling
2.3.2. Climate and Hydrological Process Analysis
2.3.3. Contributions of Climate Change to Runoff
3. Results
3.1. Accuracy of Downscaled Climate Data
3.2. Climate Change
3.3. Impact of Climatic Variables on Runoff
3.3.1. Correlation of Runoff with Temperature and Precipitation
3.3.2. Contributions of Climate Change to Runoff
4. Discussion
4.1. Climate Downscaling
4.2. Climate and Runoff Processes in Mountainous Rivers
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pacheco, F.A. Regional groundwater flow in hard rocks. Sci. Total Environ. 2015, 506, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, Y.; Gong, W.; Che, Y.; Ma, X.; Xie, J. Reason Analysis of the Jiwenco Glacial Lake Outburst Flood (GLOF) and Potential Hazard on the Qinghai-Tibetan Plateau. Remote Sens. 2021, 13, 3114. [Google Scholar] [CrossRef]
- Allen, M.R.; Frame, D.J.; Huntingford, C.; Jones, C.D.; Lowe, J.A.; Meinshausen, M.; Meinshausen, N. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Gardner, L.R. Assessing the effect of climate change on mean annual runoff. J. Hydrol. 2009, 379, 351–359. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; de Oliveira Martins, L.M.; Pacheco, F.A.L.; Fernandes, L.F.S. The consequences for stream water quality of long-term changes in landscape patterns: Implications for land use management and policies. Land Use Policy 2021, 109, 105679. [Google Scholar] [CrossRef]
- Pacheco, F.A.; Van der Weijden, C.H. Modeling rock weathering in small water-sheds. J. Hydrol. 2014, 513, 13–27. [Google Scholar] [CrossRef]
- Chen, Y.; Takeuchi, K.; Xu, C.; Chen, Y.; Xu, Z. Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol. Process. 2006, 20, 2207–2216. [Google Scholar] [CrossRef]
- Dierauer, J.R.; Whitfield, P.H.; Allen, D.M. Climate Controls on Runoff and Low Flows in Mountain Catchments of Western North America. Water Resour. Res. 2018, 54, 7495–7510. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P.P. Isolating the impacts of land use and climate change on streamflow. Hydrol. Earth Syst. Sci. 2015, 19, 3633–3651. [Google Scholar] [CrossRef]
- Bai, P.; Liu, W.H.; Guo, M.J. Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China. Theor. Appl. Climatol. 2014, 117, 293–301. [Google Scholar] [CrossRef]
- Meng, D.; Mo, X. Assessing the effect of climate change on mean annual runoff in the Songhua River basin, China. Hydrol. Process. 2011, 26, 1050–1061. [Google Scholar] [CrossRef]
- Yang, H.B.; Yang, D.W. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resour. Res. 2011, 47, W07526. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F.H.S. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43, W11419. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Chen, Y.; Li, W. An approach to simulate the climate-driven streamflow in the data-scarce mountain basins of Northwest China. J. Earth Syst. Sci. 2019, 128, 95. [Google Scholar] [CrossRef]
- Han, H.; Hou, J.; Huang, M.; Li, Z.; Xu, K.; Zhang, D.; Bai, G.; Wang, C. Impact of soil and water conservation measures and precipitation on streamflow in the middle and lower reaches of the Hulu River Basin, China. Catena 2020, 195, 104792. [Google Scholar] [CrossRef]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef]
- Pham, Q.B.; Afan, H.A.; Mohammadi, B.; Ahmed, A.N.; Linh, N.T.T.; Vo, N.D.; Moazenzadeh, R.; Yu, P.-S.; El-Shafie, A. Hybrid model to improve the river streamflow forecasting utilizing multi-layer perceptron-based intelligent water drop optimization algorithm. Soft. Comput. 2020, 24, 18039–18056. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Fu, G.; He, R.; Yan, X.; Jin, J.; Liu, Y.; Zhang, A. Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities? J. Hydrol. 2012, 460, 117–129. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.-F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrol. Sci. J. 2014, 60, 873–889. [Google Scholar] [CrossRef]
- Xu, J.; Li, W.; Ji, M.; Lu, F.; Dong, S. A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, Western China. Hydrol. Process. 2010, 24, 136–146. [Google Scholar] [CrossRef]
- Bouhalais, M.L.; Nouioua, M. The analysis of tool vibration signals by spectral kurtosis and ICEEMDAN modes energy for insert wear monitoring in turning operation. Int. J. Adv. Manuf. Technol. 2021, 115, 2989–3001. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J12. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Chen, Z.; Li, W. Trends in runoff versus climate change in typical rivers in the arid region of Northwest China. Quat. Int. 2012, 282, 87–95. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, Y.; Chen, Y.; Zhang, Q. Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs. Remote Sens. 2022, 14, 115. [Google Scholar] [CrossRef]
- Jena, P.P.; Chatterjee, C.; Pradhan, G.; Mishra, A. Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls? J. Hydrol. 2014, 517, 847–862. [Google Scholar] [CrossRef]
- Yu, J.; Fu, G.; Cai, W.; Cowan, T. Impacts of precipitation and temperature changes on annual streamflow in the Murray–Darling Basin. Water Int. 2010, 35, 313–323. [Google Scholar] [CrossRef]
- Brown, M.E.; Racoviteanu, A.E.; Tarboton, D.G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M.S.; Bajracharya, S.; et al. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas. J. Hydrol. 2014, 519, 1859–1869. [Google Scholar] [CrossRef]
- O’Neel, S.; Hood, E.; Arendt, A.; Sass, L. Assessing streamflow sensitivity to variations in glacier mass balance. Clim. Change 2014, 123, 329–341. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, W.; Yu, R.; Zhang, M. The evolution process of warm season intense regional rainfall events in Yaan. Clim. Dyn. 2020, 54, 3245–3258. [Google Scholar] [CrossRef]
- Decker, M.; Brunke, M.A.; Wang, Z.; Sakaguchi, K.; Zeng, X.; Bosilovich, M.G. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Clim. 2012, 25, 1916–1944. [Google Scholar] [CrossRef]
- Hamm, A.; Arndt, A.; Kolbe, C.; Wang, X.; Thies, B.; Boyko, O.; Reggiani, P.; Scherer, D.; Bendix, J.; Schneider, C. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau. Water 2020, 12, 3271. [Google Scholar] [CrossRef]
- Huai, B.; Wang, J.; Sun, W.; Wang, Y.; Zhang, W. Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau. Atmos. Res. 2021, 250, 105401. [Google Scholar] [CrossRef]
- Huang, D.; Gao, S. Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res. 2018, 200, 25–35. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Sun, M.; Wang, B.; Huang, X.; Wang, Q.; Feng, F. Comparison of surface air temperature derived from NCEP/DOE R2, ERA-Interim, and observations in the arid northwestern China: A consideration of altitude errors. Theor. Appl. Climatol. 2015, 119, 99–111. [Google Scholar] [CrossRef]
- Gaur, A.; Simonovic, S.P. Extension of physical scaling method and its application towards downscaling climate model based near surface air temperature. Int. J. Climatol. 2017, 37, 3353–3366. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Wang, S.; Yang, X.; Wang, L.; Baig, M.H.A.; Chi, W.; Wang, Z. Evaluation of Spatial and Temporal Performances of ERA-Interim Precipitation and Temperature in Mainland China. J. Clim. 2018, 31, 4347–4365. [Google Scholar] [CrossRef]
- Yu, Y.M.; Mu, Z.X. The impact of DEM resolution on the accuracy of runoff simulation in the Kashgar River Basin. Hydropower Energy Sci. 2016, 34, 19–23. (In Chinese) [Google Scholar]
- Song, Q.; Mu, Z.X.; Jiang, H.F. Application of SWAT model in the western mountainous area of Tianshan Mountains. J. Water Resour. Water Eng. 2013, 24, 46–49. (In Chinese) [Google Scholar]
- Ran, S.H.; Wang, X.L.; Luo, Y. Multi-model prediction of climate change and its impact on runoff in the snow and ice watershed. Arid. Land Geogr. 2021, 44, 12. (In Chinese) [Google Scholar]
- Chen, Y.; Xu, C.; Hao, X.; Li, W.; Chen, Y.; Zhu, C.; Ye, Z. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 2009, 208, 53–61. [Google Scholar] [CrossRef]
- Ji, H.; Chen, Y.; Fang, G.; Li, Z.; Duan, W.; Zhang, Q. Adaptability of machine learning methods and hydrological models to discharge simulations in data-sparse glaciated watersheds. J. Arid Land 2021, 13, 549–567. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, W.; Li, W.; Zhang, Y.; Chen, Y. Utilization of water resources and ecological protection in the Tarim River. Acta Geograph. Sin. 2003, 58, 215–222. (In Chinese) [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef]
- Guan, H.; Wilson, J.L.; Xie, H. A cluster-optimizing regression-based approach for precipitation spatial downscaling in mountainous terrain. J. Hydrol. 2009, 375, 578–588. [Google Scholar] [CrossRef]
- Revadekar, J.V.; Hameed, S.; Collins, D.; Manton, M.; Sheikh, M.; Borgaonkar, H.P.; Kothawale, D.R.; Adnan, M.; Ahmed, A.U.; Ashraf, J.; et al. Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971–2000. Int. J. Climatol. 2012, 33, 199–209. [Google Scholar] [CrossRef]
- Wacker, S.; Gröbner, J.; Vuilleumier, L. A method to calculate cloud-free long-wave irradiance at the surface based on radiative transfer modeling and temperature lapse rate estimates. Theor. Appl. Climatol. 2014, 115, 551–561. [Google Scholar] [CrossRef]
- Zuo, J.; Xu, J.; Chen, Y.; Wang, C. Downscaling precipitation in the data-scarce inland river basin of Northwest China based on Earth system data products. Atmosphere 2019, 10, 613. [Google Scholar] [CrossRef]
- Fan, M.; Xu, J.; Chen, Y.; Li, W. Reconstructing high-resolution temperature for the past 40 years in the Tianshan Mountains, China based on the Earth system data products. Atmos. Res. 2021, 253, 105493. [Google Scholar] [CrossRef]
- Fan, M.; Xu, J.; Li, D.; Chen, Y. Response of Precipitation in Tianshan to Global Climate Change Based on the Berkeley Earth and ERA5 Reanalysis Products. Remote Sens. 2022, 14, 519. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Springer: Oxford, UK, 1948; Available online: https://psycnet.apa.org/record/1948-15040-000 (accessed on 17 May 2022).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Li, W.; Nie, Q.; Hong, Y.; Yang, Y. The nonlinear hydroclimatic process in the Yarkand River, northwestern China. Stoch. Env. Res. Risk Assess. 2013, 27, 389–399. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Lu, F.; Li, W.; Zhang, L.; Hong, Y. The nonlinear trend of runoff and its response to climate change in the Aksu River, western China. Int. J. Climatol. 2011, 31, 687–695. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Li, W.; Liu, Z.; Wei, C.; Tang, J. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives. Sci. World J. 2013, 2013, 259248. [Google Scholar] [CrossRef]
- Ghodratigohar, M.; Ghanadian, H.; Osman, H. A remote respiration rate measurement method for non-stationary subjects using CEEMDAN and machine learning. IEEE Sensors J. 2020, 20, 1400–1410. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E.; Wallace, J.M.; Smoliak, B.V.; Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dyn. 2011, 37, 759–773. [Google Scholar] [CrossRef]
- Ali, M.; Prasad, R. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renew. Sust. Energ. Rev. 2019, 104, 281–295. [Google Scholar] [CrossRef]
- Clow, D.W. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, P.; Lai, C.; Chen, X.; Wu, X.; Zeng, Z.; Li, J. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108. [Google Scholar] [CrossRef]
- Haan, C.T. Statistical Methods in Hydrology; Iowa State University Press: Ames, IA, USA, 1977. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Prentice Hall: Hoboken, NJ, USA, 2005; 928p. [Google Scholar]
- Kachigan, S.K. Statistical Analysis: An Interdisciplinary Approach to Univariate and Multivariate Methods; Radius Press: New York, NY, USA, 1986; 589p. [Google Scholar]
- Bai, L.; Chen, Z.; Xu, J.; Li, W. Multi-scale response of runoff to climate fluctuation in the headwater region of Kaidu River in Xinjiang of China. Theor. Appl. Climatol. 2016, 125, 703–712. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Chen, Y.; Bai, L.; Chen, Z. A hybrid model to assess the impact of climate variability on streamflow for an ungauged mountainous basin. Clim. Dyn. 2018, 50, 2829–2844. [Google Scholar] [CrossRef]
- Praskievica, S. Downscaling climate-model output in mountainous terrain using local topographic lapse rates for hydrologic modeling of climate-change impacts. Phys. Geogr. 2018, 39, 99–117. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena 2021, 201, 105199. [Google Scholar] [CrossRef]
- Bravo, C.; Loriaus, T.; Rivera, A.; Brock, B.W. Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 3249–3266. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, Z.; Fang, G.H. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia. Arid. Land Geogr. 2022, 45, 1–8. (In Chinese) [Google Scholar] [CrossRef]
- Fan, M.; Xu, J.; Chen, Y.; Li, W. Modeling streamflow driven by climate change in data-scarce mountainous basins. Sci. Total Environ. 2021, 790, 148256. [Google Scholar] [CrossRef]
- Fan, M.; Xu, J.; Chen, Y.; Li, W. Simulating the climate driven runoff in data-scarce mountains by machine learning and downscaling reanalysis data. Stoch. Env. Res. Risk Assess. 2022. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Liu, T.; Willems, P.; Pan, X. Climate change impact on water resource extremes in a headwater region of the Tarim basin in China. Hydrol. Earth Syst. Sci. 2011, 15, 3511–3527. [Google Scholar] [CrossRef]
- Bai, L. Climate Change and Its Impacts on Runoff Process for Typical River Basin in the Southern Slopes of Tianshan Mountains; East China Normal University: Shanghai, China, 2016. (In Chinese) [Google Scholar]
- Li, B.; Chen, Y.; Shi, X.; Chen, Z.; Li, W. Temperature and precipitation changes in different environments in the arid region of northwest China. Theor. Appl. Climatol. 2013, 112, 589–596. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Fu, A.; Chen, Y.; Li, W.; Li, B.; Yang, Y.; Zhang, S. Spatial and temporal patterns of climate variations in the Kaidu River Basin of Xinjiang, Northwest China. Quat. Int. 2013, 311, 117–122. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Wei, W.; Hao, X.; Wang, M.; Li, H. Discrepancy analysis of the climate changes among mountain, plain, oasis and desert in an inland river basin in the northern slopes of the Tianshan Mountains-a case study in the Sangong river basin. J. Glaciol. Geocryol. 2009, 31, 1094–1100. [Google Scholar] [CrossRef]
- Alpuim, T.; El-Shaarawi, A. Modeling monthly temperature data in Lisbon and Prague. Environmetrics 2009, 20, 835–852. [Google Scholar] [CrossRef]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
Basin | Season | Streamflow vs. Temperature | Streamflow vs. Precipitation |
---|---|---|---|
MRB | Spring | 0.05 | 0.37 * |
Summer | 0.69 * | 0.54 * | |
Autumn | 0.32 | 0.21 | |
Winter | 0.22 | 0.37 * | |
URB | Spring | −0.29 * | 0.08 |
Summer | −0.13 | 0.65 ** | |
Autumn | −0.12 | −0.09 | |
Winter | 0.14 | 0.12 | |
KaRB | Spring | 0.09 | 0.54 * |
Summer | −0.02 | 0.74 * | |
Autumn | −0.02 | 0.07 | |
Winter | 0.28 | 0.12 | |
TRB | Spring | −0.17 | 0.46 * |
Summer | 0.02 | 0.24 | |
Autumn | 0.30 | 0.44 * | |
Winter | 0.13 | 0.09 | |
KuRB | Spring | 0.38 * | 0.05 |
Summer | 0.67 * | 0.09 | |
Autumn | 0.58 * | 0.12 | |
Winter | −0.01 | 0.02 | |
KRB | Spring | −0.02 | 0.32 * |
Summer | 0.06 | 0.55 * | |
Autumn | −0.01 | 0.24 | |
Winter | −0.06 | 0.10 |
Basin | Scale | Streamflow vs. Temperature | Streamflow vs. Precipitation |
---|---|---|---|
MRB | Seasonal | 0.7548 * | 0.1586 * |
Inter-annual | 0.4392 * | 0.7284 * | |
URB | Seasonal | 0.7915 * | 0.1678 * |
Inter-annual | 0.1214 * | 0.6550 * | |
KaRB | Seasonal | 0.0156 | 0.1681 * |
Inter-annual | 0.2283 * | 0.5309 * | |
TRB | Seasonal | 0.7467 * | 0.3494 * |
Inter-annual | 0.2812 * | 0.3866 * | |
Inter-decadal | 0.1837 * | 0.9174 * | |
KuRB | Seasonal | 0.1431 * | 0.2772 * |
Inter-annual | 0.6746 * | 0.7185 * | |
Inter-decadal | 0.3832 * | 0.2023 * | |
KRB | Seasonal | 0.1458 * | −0.0136 |
Inter-annual | 0.2524 * | 0.8536 * | |
Inter-decadal | 0.2008 * | −0.2041 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Xu, J.; Chen, Y.; Fan, M.; Yu, W.; Li, W. Temperature Contributes More than Precipitation to Runoff in the High Mountains of Northwest China. Remote Sens. 2022, 14, 4015. https://doi.org/10.3390/rs14164015
Fan M, Xu J, Chen Y, Fan M, Yu W, Li W. Temperature Contributes More than Precipitation to Runoff in the High Mountains of Northwest China. Remote Sensing. 2022; 14(16):4015. https://doi.org/10.3390/rs14164015
Chicago/Turabian StyleFan, Mengtian, Jianhua Xu, Yaning Chen, Meihui Fan, Wenzheng Yu, and Weihong Li. 2022. "Temperature Contributes More than Precipitation to Runoff in the High Mountains of Northwest China" Remote Sensing 14, no. 16: 4015. https://doi.org/10.3390/rs14164015
APA StyleFan, M., Xu, J., Chen, Y., Fan, M., Yu, W., & Li, W. (2022). Temperature Contributes More than Precipitation to Runoff in the High Mountains of Northwest China. Remote Sensing, 14(16), 4015. https://doi.org/10.3390/rs14164015