Orthorectification of Fisheye Image under Equidistant Projection Model
Abstract
:1. Introduction
Related Work
2. Orthorectification Method for Fisheye Image
2.1. Fisheye Image Distortion Model
2.2. The Relationship between Spherical and Perspective Projection Model
2.3. Orthorectification Model for Fisheye Image
2.4. Orthorectification Process for Fisheye Image
3. Experiments and Analysis
3.1. Experiment 1
3.1.1. Indoor Calibration Field Set-Up
3.1.2. Fisheye Image I/EOPs and Distortion Parameters Solution
3.1.3. Orthorectification of Fisheye Image and DOM Accuracy Evaluation
3.2. Experiment 2
3.2.1. Outdoor Calibration Field Set-Up
3.2.2. I/EOPs and Distortion Parameters for Fisheye Image
3.2.3. Orthorectification of Fisheye Image and DOM Accuracy Evaluation
3.3. Experiment 3
3.3.1. Ground Calibration Field Set-Up
3.3.2. Fisheye Image I/EOPs and Distortion Parameters Solution
3.3.3. Orthorectification and Accuracy Evaluation
4. Discussion
4.1. Error Analysis of the DOM
- (1).
- Although the calibration field of the fish-eye camera is established, and the strict calibration model and the adjustment method are presented in this paper, the measurement of the coordinates of the CPs is greatly affected by the limitations of measuring instruments and measurement environment, resulting in the inaccuracy of the calibration results of the fish-eye camera.
- (2).
- The DEM or digital surface model with error, which is used for DOM generation, is propagated to DOM, resulting in DOM error.
- (3).
- The error is caused by inaccurate GCP position during extraction, since the distortion of a fisheye image is nonlinear, which is very difficult to be modeled, resulting in residuals.
4.2. Deficiencies in the Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, G.; Schickler, W.; Thorpe, A.; Song, P.; Chen, W.; Song, C. True orthoimage generation in urban areas with very tall buildings. Int. J. Remote Sens. 2004, 25, 5163–5180. [Google Scholar] [CrossRef]
- Zhou, G.; Yue, T.; Shi, Y.; Zhang, R.; Huang, J. Second-Order Polynomial Equation-Based Block Adjustment for Orthorectification of DISP Imagery. Remote Sens. 2016, 8, 680. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, G.; Song, R.; Xie, Y.; Luo, M.; Yue, T. Continuous space ant colony algorithm for automatic selection of orthophoto mosaic seamline network. ISPRS J. Photogramm. Remote Sens. 2022, 186, 201–217. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, R.; Liu, N.; Huang, J.; Zhou, X. On-Board Ortho-Rectification for Images Based on an FPGA. Remote Sens. 2017, 9, 874. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, W.; Kelmelis, J.A.; Zhang, D. A comprehensive study on urban true orthorectification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2138–2147. [Google Scholar] [CrossRef]
- Zhou, G. Urban High-Resolution Remote Sensing:Algorithms and Modeling; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Moreau, J.; Ambellouis, S.; Ruichek, Y. Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas. Sensors 2017, 17, 119. [Google Scholar] [CrossRef]
- Courbon, J.; Mezouar, Y.; Martinet, P. Evaluation of the Unified Model of the Sphere for Fisheye Cameras in Robotic Applications. Adv. Robot. 2012, 26, 947–967. [Google Scholar] [CrossRef]
- Kim, D.; Choi, J.; Yoo, H.; Yang, U.; Sohn, K. Rear obstacle detection system with fisheye stereo camera using HCT. Expert Syst. Appl. 2015, 42, 6295–6305. [Google Scholar] [CrossRef]
- Li, T.; Tong, G.; Tang, H.; Li, B.; Chen, B. FisheyeDet: A Self-Study and Contour-Based Object Detector in Fisheye Images. IEEE Access 2020, 8, 71739–71751. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.-Y. Expandable Spherical Projection and Feature Concatenation Methods for Real-Time Road Object Detection Using Fisheye Image. Appl. Sci. 2022, 12, 2403. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Chen, H.H. Efficient Face Detection in the Fisheye Image Domain. IEEE Trans. Image Process. 2021, 30, 5641–5651. [Google Scholar] [CrossRef] [PubMed]
- Kokka, A.; Pulli, T.; Poikonen, T.; Askola, J.; Ikonen, E. Fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Metrologia 2017, 54, 577–583. [Google Scholar] [CrossRef]
- Lee, G.J.; Nam, W.I.; Song, Y.M. Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface. Opt. Laser Technol. 2017, 96, 50–57. [Google Scholar] [CrossRef]
- Berveglieri, A.; Tommaselli, A.; Liang, X.; Honkavaara, E. Photogrammetric measurement of tree stems from vertical fisheye images. Scand. J. For. Res. 2017, 32, 737–747. [Google Scholar] [CrossRef]
- Feilong, L.; Erxue, C. Leaf AreaIndex Estimationfor QinghaiSpruceForest Using DigitalHemisphericalPhotography. Adv. Sci. 2009, 24, 803–809. [Google Scholar] [CrossRef]
- Zhou, G. Near Real-Time Orthorectification and Mosaic of Small UAV Video Flow for Time-Critical Event Response. IEEE Trans. Geosci. Remote Sens. 2009, 47, 739–747. [Google Scholar] [CrossRef]
- Zhou, G.; Jiang, L.; Huang, J.; Zhang, R.; Liu, D.; Zhou, X.; Baysal, O. FPGA-Based On-Board Geometric Calibration for Linear CCD Array Sensors. Sensors 2018, 18, 1794. [Google Scholar] [CrossRef]
- Schwalbe, E. Geometric modelling and calibration of fisheye lens camera systems. In Proceedings of the 2nd Panoramic Photogrammetry Workshop, International Archives of Photogrammetry and Remote Sensing, Berlin, Germany, 24–25 February 2005; p. W8. [Google Scholar]
- Ahmad, A.; Xavier, J.; Santos-Victor, J.; Lima, P. 3D to 2D bijection for spherical objects under equidistant fisheye projection. Comput. Vis. Image Underst. 2014, 125, 172–183. [Google Scholar] [CrossRef]
- Tommaselli, A.M.G.; Marcato, J., Jr.; Moraes, M.V.A.; Silva, S.L.A.; Artero, A.O. Calibration of panoramic cameras with coded targets and a 3d calibration field. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-3/W1, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Sahin, C. Comparison and calibration of mobile phone fisheye lens and regular fisheye lens via equidistant model. J. Sens. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Urquhart, B.; Kurtz, B.; Kleissl, J. Sky camera geometric calibration using solar observations. Atmos. Meas. Tech. 2016, 9, 4279–4294. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Kannala, J.; Brandt, S.S. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Kanatani, K. Calibration of ultrawide fisheye lens cameras by eigenvalue minimization. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 813–822. [Google Scholar] [CrossRef]
- Arfaoui, A.; Thibault, S. Fisheye lens calibration using virtual grid. Appl. Opt. 2013, 52, 2577–2583. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, F.; Zhou, J.; Wang, J.; Wang, X.J.; Wang, X. Estimation of fisheye camera external parameter based on second-order cone programming. IET Comput. Vis. 2016, 10, 415–424. [Google Scholar] [CrossRef]
- Meng, L.; Li, Y.; Wang, Q.L. A Calibration Method for Mobile Omnidirectional Vision Based on Structured Light. IEEE Sens. J. 2020, 21, 11451–11460. [Google Scholar] [CrossRef]
- Hartley, R.; Kang, S.B. Parameter-free radial distortion correction with center of distortion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1309–1321. [Google Scholar] [CrossRef]
- Schneider, D.; Schwalbe, E.; Maas, H.-G. Validation of geometric models for fisheye lenses. ISPRS J. Photogramm. Remote Sens. 2009, 64, 259–266. [Google Scholar] [CrossRef]
- Hughes, C.; McFeely, R.; Denny, P.; Glavin, M.; Jones, E. Equidistant (fθ) fish-eye perspective with application in distortion centre estimation. Image Vis. Comput. 2010, 28, 538–551. [Google Scholar] [CrossRef]
- Perfetti, L.; Polari, C.; Fassi, F. Fisheye photogrammetry: Tests and methodologies for the survey of narrow spaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 573–580. [Google Scholar] [CrossRef]
- Choi, K.H.; Kim, Y.; Kim, C. Analysis of fish-eye lens camera self-calibration. Sensors 2019, 19, 1218. [Google Scholar] [CrossRef] [PubMed]
- Kakani, V.; Kim, H.; Kumbham, M.; Park, D.; Jin, C.-B.; Nguyen, V.H. Feasible self-calibration of larger field-of-view (FOV) camera sensors for the advanced driver-assistance system (ADAS). Sensors 2019, 19, 3369. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Q.; Gong, L.; Zhu, M.; Ding, X.; Teng, R.K. High-speed simultaneous image distortion correction transformations for a multicamera cylindrical panorama real-time video system using FPGA. IEEE Trans. Circuits Syst. Video Technol. 2013, 24, 1061–1069. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, K.; Fan, G. Photometric calibration and image stitching for a large field of view multi-camera system. Sensors 2016, 16, 516. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.-H.; Hu, Z.-Y. Fisheye lense distortion correction using spherical perspective projection constraint. Chin. J. Comput.-Chin. Ed. 2003, 26, 1702–1708. [Google Scholar]
- Si, W.; Yang, C. A fisheye image correction method based on longitude Model. Comput. Technol. Dev. 2014, 38–41, 46. [Google Scholar] [CrossRef]
- Zhao, K.; Liao, K.; Lin, C.; Liu, M.; Zhao, Y. Joint distortion rectification and super-resolution for self-driving scene perception. Neurocomputing 2021, 435, 176–185. [Google Scholar] [CrossRef]
- Yang, S.; Lin, C.; Liao, K.; Zhao, Y.; Liu, M. Unsupervised fisheye image correction through bidirectional loss with geometric prior. J. Vis. Commun. Image Represent. 2020, 66, 102692. [Google Scholar] [CrossRef]
- Zhao, K.; Lin, C.; Liao, K.; Yang, S.; Zhao, Y. Revisiting Radial Distortion Rectification in Polar-Coordinates: A New and Efficient Learning Perspective. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 3552–3560. [Google Scholar] [CrossRef]
- Liao, K.; Lin, C.; Zhao, Y.; Gabbouj, M. DR-GAN: Automatic radial distortion rectification using conditional GAN in real-time. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 725–733. [Google Scholar] [CrossRef]
- Zhou, G. Data Mining for Co-Location Patterns: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Pi, Y.; Xin, L.; Chen, Z. Calibration and Rectification of Fisheye Images Based on Three-Dimensional Control Field. Acta Opt. Sin. 2017, 37, 11–15. [Google Scholar] [CrossRef]
- Zhou, G.; Xie, W.; Cheng, P. Orthoimage creation of extremely high buildings. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4132–4141. [Google Scholar] [CrossRef]
- Department of Surveying Adjustment, School of Geodesy and Geomatics, Wuhan University. Error Theory and Foundation of Surveying Adjustment, 3rd ed.; Wuhan University Press: Wuhan, China, 2014; pp. 37–42. ISBN 978-7-307-12922-1. [Google Scholar]
Parameters | Calculated Values | |
---|---|---|
IOP | /pixel | 1799.9 |
/pixel | 1208.3 | |
/pixel | 1322.1 | |
EOP | /m | 1.118010 |
/m | 1.471436 | |
/m | 2.989921 | |
/° | 0.005503 | |
/° | −0.000775 | |
/° | 0.298503 | |
s | /pixel | −5.490496 × 10−9 |
/pixel | 7.815727 × 10−15 | |
/pixel | 3.692065 × 10−20 | |
p1/pixel | 2.083826 × 10−6 | |
/pixel | 3.306438 × 10−6 |
Ranks | Actual Coordinates (m) | Coordinates on the DOM (m) | ∆x (m) | ∆y (m) | ||
---|---|---|---|---|---|---|
Xi | ||||||
cp10 | −1.688 | 3.723 | −1.690 | 3.725 | −0.002 | 0.002 |
cp19 | −1.039 | 3.284 | −1.040 | 3.284 | −0.001 | 0.000 |
cp28 | −0.482 | 2.884 | −0.485 | 2.885 | −0.003 | 0.001 |
cp37 | 0.090 | 2.502 | 0.094 | 2.503 | 0.004 | 0.001 |
cp45 | 0.639 | 1.661 | 0.641 | 1.665 | 0.002 | 0.004 |
cp55 | 1.199 | 1.714 | 1.196 | 1.713 | −0.003 | −0.001 |
cp64 | 1.771 | 1.296 | 1.768 | 1.294 | −0.003 | −0.002 |
cp73 | 2.320 | 0.893 | 2.317 | 0.894 | −0.003 | 0.001 |
cp82 | 2.836 | 0.494 | 2.833 | 0.496 | −0.003 | 0.002 |
cp91 | 3.412 | 0.110 | 3.410 | 0.113 | −0.002 | 0.003 |
Parameters | Calculated Values | |
---|---|---|
IOP | /pixel | 1805.9 |
/pixel | 1203.3 | |
/pixel | 1320.7 | |
EOP | /m | 63.085376 |
/m | 2.144978 | |
/m | 2.194929 | |
/° | 0.025830 | |
/° | 0.177094 | |
/° | −0.013255 | |
s | /pixel | 3.860474 × 10−8 |
/pixel | −1.431833 × 10−14 | |
k3/pixel | 2.852065 × 10−20 | |
/pixel | −9.419212 × 10−6 | |
p2/pixel | 3.575974 × 10−7 |
Ranks | Actual Coordinates (m) | Coordinates on the DOM (m) | ∆x (m) | ∆y (m) | ||
---|---|---|---|---|---|---|
CP94 | 38.139 | 16.196 | 38.09 | 16.6 | 0.049 | 0.404 |
CP88 | 46.109 | 12.586 | 46.29 | 12.7 | 0.419 | 0.414 |
CP21 | 54.707 | 8.672 | 54.39 | 8.9 | 0.317 | 0.228 |
CP48 | 62.699 | 11.536 | 62.49 | 11.6 | 0.209 | 0.064 |
CP57 | 63.171 | 15.137 | 63.09 | 15.1 | 0.081 | −0.037 |
CP80 | 55.185 | 18.729 | 55.09 | 18.9 | 0.095 | 0.171 |
CP13 | 30.000 | 8.550 | 29.89 | 8.6 | 0.787 | 0.631 |
CP24 | 38.256 | 9.092 | 38.49 | 9.2 | 0.666 | 0.508 |
CP20 | 54.707 | 7.942 | 54.29 | 8.2 | 0.417 | 0.258 |
Parameters | Calculated Values | |
---|---|---|
IOP | /pixel | 2036.6 |
/pixel | 1171.4 | |
/pixel | 990.3 | |
EOP | XS/m | 2,773,524.201 |
/m | 428,998.226 | |
XS/m | 243.4284334 | |
/° | −1.544509 | |
/° | −0.026032 | |
/° | 0.484693 | |
s | /pixel | 1.26554 × 10−7 |
/pixel | −1.47790 × 10−13 | |
/pixel | 2.756018 × 10−19 | |
/pixel | 1.787300 × 10−6 | |
/pixel | −9.5857 × 10−6 |
Ranks | Actual Coordinates (m) | Coordinates on the DOM (m) | ∆x (m) | |||
---|---|---|---|---|---|---|
CP2 | 277XX7.41 | 42XX8.28 | 277XX6.85 | 42XX7.64 | 0.56 | 0.65 |
CP4 | 277XX7.86 | 42XX5.44 | 277XX7.62 | 42XX5.19 | 0.23 | 0.25 |
CP5 | 277XX7.94 | 42XX3.99 | 277XX8.31 | 42XX3.70 | −0.37 | 0.29 |
CP6 | 277XX6.50 | 42XX3.61 | 277XX6.93 | 42XX3.87 | −0.42 | −0.26 |
CP9 | 277XX5.31 | 42XX3.41 | 277XX4.94 | 42XX2.96 | 0.38 | 0.44 |
CP10 | 277XX3.65 | 42XX3.18 | 277XX3.54 | 42XX2.79 | 0.11 | 0.34 |
CP12 | 277XX2.94 | 42XX7.55 | 277XX3.17 | 42XX6.93 | −0.23 | 0.62 |
CP14 | 277XX3.96 | 42XX1.56 | 277XX3.60 | 42XX1.31 | 0.36 | 0.26 |
CP15 | 277XX6.92 | 42XX9.22 | 277XX6.07 | 42XX8.86 | 0.85 | 0.39 |
CP18 | 277XX6.57 | 42XX4.34 | 277XX6.69 | 42XX4.56 | −0.11 | −0.22 |
CP19 | 277XX5.54 | 42XX1.08 | 277XX5.21 | 42XX0.42 | 0.33 | 0.66 |
CP21 | 277XX4.16 | 42XX7.50 | 277XX3.87 | 42XX7.36 | 0.29 | 0.15 |
CP22 | 277XX3.74 | 42XX6.49 | 277XX3.08 | 42XX5.85 | 0.66 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.; Li, H.; Song, R.; Wang, Q.; Xu, J.; Song, B. Orthorectification of Fisheye Image under Equidistant Projection Model. Remote Sens. 2022, 14, 4175. https://doi.org/10.3390/rs14174175
Zhou G, Li H, Song R, Wang Q, Xu J, Song B. Orthorectification of Fisheye Image under Equidistant Projection Model. Remote Sensing. 2022; 14(17):4175. https://doi.org/10.3390/rs14174175
Chicago/Turabian StyleZhou, Guoqing, Huanxu Li, Ruhao Song, Qingyang Wang, Jiasheng Xu, and Bo Song. 2022. "Orthorectification of Fisheye Image under Equidistant Projection Model" Remote Sensing 14, no. 17: 4175. https://doi.org/10.3390/rs14174175
APA StyleZhou, G., Li, H., Song, R., Wang, Q., Xu, J., & Song, B. (2022). Orthorectification of Fisheye Image under Equidistant Projection Model. Remote Sensing, 14(17), 4175. https://doi.org/10.3390/rs14174175