Application of Soil Moisture Active Passive (SMAP) Satellite Data in Seismic Response Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Regions
2.2. Data and Processing
2.2.1. Seismic Records
2.2.2. Soil Moisture and Precipitation Data
2.2.3. SMAP Event Window
2.2.4. Resampling to Coarser Grids
3. Results
3.1. Relationship between ΔSM and GPM Data
3.2. Moisture Differences
3.3. Integration of ΔSMSMAP with Seismic Records
3.3.1. Petrinja, Croatia
3.3.2. Samos, Greece
3.3.3. Palu, Indonesia
3.3.4. Accumoli, Italy
3.3.5. Meinong, Taiwan
3.3.6. Muisne, Ecuador
3.3.7. Gorkha, Nepal
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ghayoomi, M.; Ghadirianniari, S.; Khosravi, A.; Mirshekari, M. Seismic behavior of pile-supported systems in unsaturated sand. Soil Dyn. Earthq. Eng. 2018, 112, 162–173. [Google Scholar] [CrossRef]
- Hoyos, L.R.; Suescún-Florez, E.A.; Puppala, A.J. Stiffness of intermediate unsaturated soil from simultaneous suction-controlled resonant column and bender element testing. Eng. Geol. 2015, 188, 10–28. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Suction stress characteristic curve for unsaturated soil. J. Geotech. Geoenviron. Eng. 2006, 132, 131–142. [Google Scholar] [CrossRef]
- Le, K.; Ghayoomi, M. Cyclic direct simple shear test to measure strain-dependent dynamic properties of unsaturated sand. Geotech. Test. J. 2017, 40, 381–395. [Google Scholar] [CrossRef]
- Yang, J.; Sato, T. Effects of pore-water saturation on seismic reflection and transmission from a boundary of porous soils. Bull. Seismol. Soc. Am. 2000, 90, 1313–1317. [Google Scholar] [CrossRef]
- Yang, J. Frequency-dependent amplification of unsaturated surface soil layer. J. Geotech. Geoenviron. Eng. 2006, 132, 526–531. [Google Scholar] [CrossRef]
- Yang, B.; Luo, Y.; Jeng, D.; Feng, J. Effects of moisture content on the dynamic response and failure mode of unsaturated soil slope subjected to seismic load. Bull. Seismol. Soc. Am. 2019, 109, 489–504. [Google Scholar] [CrossRef]
- Borghei, A.; Ghayoomi, M.; Turner, M. Effects of Groundwater Level on Seismic Response of Soil–Foundation Systems. J. Geotech. Geoenviron. Eng. 2020, 146, 04020110. [Google Scholar] [CrossRef]
- Mirshekari, M.; Ghayoomi, M. Centrifuge tests to assess seismic site response of partially saturated sand layers. Soil Dyn. Earthq. Eng. 2017, 94, 254–265. [Google Scholar] [CrossRef]
- D’Onza, F.; d’Onofrio, A.; Mancuso, C. Effects of Unsturated Soil State on the Local Seismic Response of Soil Deposits. In Proceedings of the 1st European Conference on Unsaturated Soils, Durham, UK, 2–4 July 2008. [Google Scholar]
- Turner, M.M.; Ghayoomi, M.; Ueda, K.; Uzuoka, R. Performance of rocking foundations on unsaturated soil layers with variable groundwater levels. Géotechnique 2021, 1–14. [Google Scholar] [CrossRef]
- Nowicki Jessee, M.; Hamburger, M.; Allstadt, K.; Wald, D.J.; Robeson, S.; Tanyas, H.; Hearne, M.; Thompson, E. A global empirical model for near-real-time assessment of seismically induced landslides. J. Geophys. Res. Earth Surf. 2018, 123, 1835–1859. [Google Scholar] [CrossRef]
- Bray, J.D.; Dashti, S. Liquefaction-induced building movements. Bull. Earthq. Eng. 2014, 12, 1129–1156. [Google Scholar] [CrossRef]
- Bird, J.F.; Bommer, J.J.; Crowley, H.; Pinho, R. Modelling liquefaction-induced building damage in earthquake loss estimation. Soil Dyn. Earthq. Eng. 2006, 26, 15–30. [Google Scholar] [CrossRef]
- Del Soldato, M.; Bianchini, S.; Calcaterra, D.; De Vita, P.; Martire, D.D.; Tomás, R.; Casagli, N. A new approach for landslide-induced damage assessment. Geomat. Nat. Hazards Risk 2017, 8, 1524–1537. [Google Scholar] [CrossRef]
- Stewart, J.P.; Smith, P.M.; Whang, D.H.; Bray, J.D. Seismic compression of two compacted earth fills shaken by the 1994 Northridge earthquake. J. Geotech. Geoenviron. Eng. 2004, 130, 461–476. [Google Scholar] [CrossRef]
- Ghayoomi, M.; McCartney, J.S.; Ko, H.-Y. Empirical methodology to estimate seismically induced settlement of partially saturated sand. J. Geotech. Geoenviron. Eng. 2013, 139, 367–376. [Google Scholar] [CrossRef]
- Mousavi, S.; Ghayoomi, M. Seismic Compression of Unsaturated Silty Sands: A Strain-Based Approach. J. Geotech. Geoenviron. Eng. 2021, 147, 04021023. [Google Scholar] [CrossRef]
- Yee, E.; Stewart, J.P.; Duku, P.M. Seismic compression behavior of sands with fines of low plasticity. In Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, CA, USA, 25–29 March 2012; pp. 839–848. [Google Scholar]
- Rong, W.; McCartney, J. Undrained Seismic Compression of Unsaturated Sand. J. Geotech. Geoenviron. Eng. 2021, 147, 04020145. [Google Scholar] [CrossRef]
- Ochsner, E.; Cosh, M.H.; Cuenca, R.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.; Zreda, M. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil moisture remote sensing: State-of-the-science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Ray, R.L.; Jacobs, J.M. Relationships among remotely sensed soil moisture, precipitation and landslide events. Nat. Hazards 2007, 43, 211–222. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Mohanty, K.; Nayak, S.; Chandran, R.V. Mapping the liquefaction induced soil moisture changes using remote sensing technique: An attempt to map the earthquake induced liquefaction around Bhuj, Gujarat, India. Geotech. Geol. Eng. 2006, 24, 1581–1602. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Dell’Acqua, F.; Gamba, P. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives. Proc. IEEE 2012, 100, 2876–2890. [Google Scholar] [CrossRef]
- Chormanski, J.; Okruszko, T.; Ignar, S.; Batelaan, O.; Rebel, K.; Wassen, M. Flood mapping with remote sensing and hydrochemistry: A new method to distinguish the origin of flood water during floods. Ecol. Eng. 2011, 37, 1334–1349. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Mansouri, B.; Shinozuka, M.; Huyck, C.; Houshmand, B. Earthquake-induced change detection in the 2003 Bam, Iran, earthquake by complex analysis using Envisat ASAR data. Earthq. Spectra 2005, 21, 275–284. [Google Scholar] [CrossRef]
- Oommen, T.; Baise, L.G.; Gens, R.; Prakash, A.; Gupta, R.P. Documenting earthquake-induced liquefaction using satellite remote sensing image transformations. Environ. Eng. Geosci. 2013, 19, 303–318. [Google Scholar] [CrossRef]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Comparative analysis for detecting areas with building damage from several destructive earthquakes using satellite synthetic aperture radar images. J. Appl. Remote Sens. 2010, 4, 041867. [Google Scholar]
- Fernández, J.; Yu, T.-T.; Rodrıguez-Velasco, G.; González-Matesanz, J.; Romero, R.; Rodrıguez, G.; Quirós, R.; Dalda, A.; Aparicio, A.; Blanco, M. New geodetic monitoring system in the volcanic island of Tenerife, Canaries, Spain. Combination of InSAR and GPS techniques. J. Volcanol. Geotherm. Res. 2003, 124, 241–253. [Google Scholar] [CrossRef]
- Hossain, F.; Katiyar, N. Improving flood forecasting in international river basins. Eos Trans. Am. Geophys. Union 2006, 87, 49–54. [Google Scholar] [CrossRef]
- Vuyovich, C.; Jacobs, J.M. Snowpack and runoff generation using AMSR-E passive microwave observations in the Upper Helmand Watershed, Afghanistan. Remote Sens. Environ. 2011, 115, 3313–3321. [Google Scholar] [CrossRef]
- Brocca, L.; Ponziani, F.; Moramarco, T.; Melone, F.; Berni, N.; Wagner, W. Improving landslide forecasting using ASCAT-derived soil moisture data: A case study of the Torgiovannetto landslide in central Italy. Remote Sens. 2012, 4, 1232–1244. [Google Scholar] [CrossRef]
- Avalon Cullen, C.; Al-Suhili, R.; Khanbilvardi, R. Guidance index for shallow landslide hazard analysis. Remote Sens. 2016, 8, 866. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Yun, S.-H.; Hudnut, K.; Owen, S.; Webb, F.; Simons, M.; Sacco, P.; Gurrola, E.; Manipon, G.; Liang, C.; Fielding, E. Rapid damage mapping for the 2015 M w 7.8 Gorkha earthquake using synthetic aperture radar data from COSMO–SkyMed and ALOS-2 Satellites. Seismol. Res. Lett. 2015, 86, 1549–1556. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, J.; Peng, J.; Lu, Q. Estimating Wenchuan Earthquake induced landslides based on remote sensing. Int. J. Remote Sens. 2010, 31, 3495–3508. [Google Scholar] [CrossRef]
- Rathje, E.M.; Franke, K. Remote sensing for geotechnical earthquake reconnaissance. Soil Dyn. Earthq. Eng. 2016, 91, 304–316. [Google Scholar] [CrossRef]
- Zimmaro, P.; Nweke, C.C.; Hernandez, J.L.; Hudson, K.S.; Hudson, M.B.; Ahdi, S.K.; Boggs, M.L.; Davis, C.A.; Goulet, C.A.; Brandenberg, S.J. Liquefaction and related ground failure from July 2019 Ridgecrest earthquake sequence. Bull. Seismol. Soc. Am. 2020, 110, 1549–1566. [Google Scholar] [CrossRef]
- Ghosh, S.; Huyck, C.K.; Greene, M.; Gill, S.P.; Bevington, J.; Svekla, W.; DesRoches, R.; Eguchi, R.T. Crowdsourcing for rapid damage assessment: The global earth observation catastrophe assessment network (GEO-CAN). Earthq. Spectra 2011, 27, 179–198. [Google Scholar] [CrossRef]
- Yamazaki, F.; Yano, Y.; Matsuoka, M. Visual damage interpretation of buildings in Bam city using QuickBird images following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 329–336. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Matsuoka, M. A Preliminary Damage Assessment Using Dual Path Synthetic Aperture Radar Analysis for the M 6.4 Petrinja Earthquake (2020), Croatia. Remote Sens. 2021, 13, 2267. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Building damage mapping of the 2003 Bam, Iran, earthquake using Envisat/ASAR intensity imagery. Earthq. Spectra 2005, 21, 285–294. [Google Scholar] [CrossRef]
- Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H. Landslide inventories: The essential part of seismic landslide hazard analyses. Eng. Geol. 2011, 122, 9–21. [Google Scholar] [CrossRef]
- Rathje, E.M.; Secara, S.S.; Martin, J.G.; van Ballegooy, S.; Russell, J. Liquefaction-induced horizontal displacements from the Canterbury earthquake sequence in New Zealand measured from remote sensing techniques. Earthq. Spectra 2017, 33, 1475–1494. [Google Scholar] [CrossRef]
- Kieffer, D.S.; Jibson, R.; Rathje, E.M.; Kelson, K. Landslides triggered by the 2004 Niigata ken Chuetsu, Japan, earthquake. Earthq. Spectra 2006, 22, 47–73. [Google Scholar] [CrossRef]
- Chunyan, Q.; Xinjian, S.; Yunhua, L.; Guohong, Z.; Xiaogang, S.; Guifang, Z.; Liming, G.; Yufei, H. Ground surface ruptures and near-fault, large-scale displacements caused by the Wenchuan Ms8. 0 earthquake derived from pixel offset tracking on synthetic aperture radar images. Acta Geol. Sin. Engl. Ed. 2012, 86, 510–519. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Yeck, W.L.; McNamara, D.E. Induced earthquake and liquefaction hazards in Oklahoma, USA: Constraints from InSAR. Remote Sens. Environ. 2018, 218, 1–12. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Tsuji, T.; Matsuoka, T. Detection and mapping of soil liquefaction in the 2011 Tohoku earthquake using SAR interferometry. Earth Planets Space 2012, 64, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Fielding, E.J.; Talebian, M.; Rosen, P.A.; Nazari, H.; Jackson, J.A.; Ghorashi, M.; Walker, R. Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef]
- Sadek, S.; Dabaghi, M.; Elhajj, I.; Zimmaro, P.; Hashash, Y.M.; Yun, S.H.; O’Donnell, T.M.; Stewart, J.P. Engineering Impacts of the August 4, 2020 Port of Beirut, Lebanon Explosion; Report GEER-070; Geotechnical Extreme Events Reconnaissance Association: Canaan, CT, USA, 2021. [Google Scholar]
- Zhu, J.; Baise, L.G.; Thompson, E.M. An updated geospatial liquefaction model for global application. Bull. Seismol. Soc. Am. 2017, 107, 1365–1385. [Google Scholar] [CrossRef]
- SMAP. Technical References. 2021. Available online: https://nsidc.org/data/smap/technical-references/ (accessed on 1 November 2021).
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space; JPL Publication: Pasadena, CA, USA, 2014.
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Mao, Y.; Crow, W.T.; Nijssen, B. A unified data-driven method to derive hydrologic dynamics from global SMAP surface soil moisture and GPM precipitation data. Water Resour. Res. 2020, 56, e2019WR024949. [Google Scholar] [CrossRef]
- Chen, Q.; Zeng, J.; Cui, C.; Li, Z.; Chen, K.-S.; Bai, X.; Xu, J. Soil moisture retrieval from SMAP: A validation and error analysis study using ground-based observations over the little Washita watershed. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1394–1408. [Google Scholar] [CrossRef]
- Stillman, S.; Zeng, X. Evaluation of SMAP soil moisture relative to five other satellite products using the climate reference network measurements over USA. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6296–6305. [Google Scholar] [CrossRef]
- Forgotson, C.; O’Neill, P.E.; Carrera, M.L.; Bélair, S.; Das, N.N.; Mladenova, I.E.; Bolten, J.D.; Jacobs, J.M.; Cho, E.; Escobar, V.M. How satellite soil moisture data can help to monitor the impacts of climate change: SMAP case studies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1590–1596. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Xu, Y.; Kim, J.; George, D.L.; Lu, Z. Characterizing seasonally rainfall-driven movement of a translational landslide using SAR imagery and SMAP soil moisture. Remote Sens. 2019, 11, 2347. [Google Scholar] [CrossRef]
- Davitt, A.; Schumann, G.; Forgotson, C.; McDonald, K.C. The utility of SMAP soil moisture and freeze-thaw datasets as precursors to spring-melt flood conditions: A case study in the Red River of the North Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2848–2861. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Mohammed, P.N.; Aksoy, M.; Piepmeier, J.R.; Johnson, J.T.; Bringer, A. SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6035–6047. [Google Scholar] [CrossRef]
- USGS. Earthquake Catalog. 2021. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 1 November 2021).
- GEER. Geotechnical Extreme Events Reconnaissance. 2022. Available online: http://www.geerassociation.org/ (accessed on 1 November 2021).
- Miranda, E.; Brzev, S.; Bijelic, N.; Arbanas, Ž.; Bartolac, M.; Jagodnik, V.; Lazarević, D.; Mihalić Arbanas, S.; Zlatović, S.; Acosta, A. Petrinja, Croatia December 29, 2020, Mw 6.4 Earthquake Joint Reconnaissance Report (JRR); Learning From Earthquakes (LFE) Program of the Earthquake Engineering Research Institute (EERI); Structural Extreme Events Reconnaissance (StEER) Network. 2021. Available online: https://www.research-collection.ethz.ch/handle/20.500.11850/465058 (accessed on 1 November 2021).
- ARIA. Damage Proxy Maps. 2021. Available online: https://aria-share.jpl.nasa.gov/ (accessed on 1 November 2021).
- O’Neill, P.E.S.; Chan, E.G.; Njoku, T.; Jackson, R.; Bindlish; Chaubell, J. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 4; National Snow & Ice Data Center: Boulder, CO, USA, 2020. [CrossRef]
- Beaudoing, H.; Rodell, M.; NASA; GSFC; HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 x 0.25 Degree V2.1; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2020. [CrossRef]
- Huffman, G.; Stocker, E.; Bolvin, D.; Nelkin, E.; Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree × 0.1 Degree V06; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019.
- Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Cosh, M.H.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–275. [Google Scholar] [CrossRef]
- Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Sun, J.; Hutchinson, T.C.; Clahan, K.; Menq, F.; Lo, E.; Chang, W.-J.; Tsai, C.-C.; Ma, K.-F. Geotechnical Reconnaissance of the 2016 Mw 6.3 Meinong Earthquake, Taiwan. A report of the NSF- Sponsored GEER Association Team GEER Association Report No. GEER-046. 2016. Available online: https://geerassociation.org/component/geer_reports/?view=geerreports&id=73 (accessed on 1 November 2021).
- Joseph, G. Fundamentals of Remote Sensing; Universities Press: Telangana, India, 2005. [Google Scholar]
- Dong, J.; Akbar, R.; Short Gianotti, D.J.; Feldman, A.F.; Crow, W.T.; Entekhabi, D. Can Surface Soil Moisture Information Identify Evapotranspiration Regime Transitions? Geophys. Res. Lett. 2022, 49, e2021GL097697. [Google Scholar] [CrossRef]
- Paris Anguela, T.; Zribi, M.; Hasenauer, S.; Habets, F.; Loumagne, C. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France). Hydrol. Earth Syst. Sci. 2008, 12, 1415–1424. [Google Scholar] [CrossRef] [Green Version]
- Çetin, K.; Mylonakis, G.; Sextos, A.; Stewart, J.; Irmak, T. Seismological and Engineering Effects of the M 7.0 Samos Island (Aegean Sea) Earthquake; GEER Report 069; Hellenic Association of Earthquake Engineering: Athens, Greece, 2020. [Google Scholar]
- Mason, H.B.; Gallant, A.P.; Hutabarat, D.; Montgomery, J.; Reed, A.N.; Wartman, J.; Irsyam, M.; Prakoso, W.; Djarwadi, D.; Harnanto, D. Geotechnical Reconnaissance: The 28 September 2018 M7. 5 Palu-Donggala, Indonesia Earthquake; Geotechnical Extreme Events Reconnaissance Association: Atlanta, GA, USA, 2021. [Google Scholar]
- GEER. Engineering Reconnaissance of the 24 August 2016 Central Italy Earthquake, Version 2; A Report of the NSF-Sponsored GEER Association Team GEER Association Report No. GEER-050B; Geotechnical Extreme Events Reconnaissance Association: Atlanta, GA, USA, 2016; Available online: http://www.geerassociation.org/ (accessed on 1 November 2021).
- Hashash, Y.; Tiwari, B.; Moss, R.E.; Asimaki, D.; Clahan, K.B.; Kieffer, D.S.; Dreger, D.S.; Macdonald, A.; Madugo, C.M.; Mason, H.B. Geotechnical Field Reconnaissance: Gorkha (Nepal) Earthquake of April 25, 2015 and Related Shaking Sequence; Geotechnical Extreme Event Reconnaisance GEER Association Report No. GEER-040; Geotechnical Extreme Events Reconnaissance Association: Atlanta, GA, USA, 2015; Volume 1. [Google Scholar]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Xu, C.; Qu, J.J.; Hao, X.; Cosh, M.H.; Prueger, J.H.; Zhu, Z.; Gutenberg, L. Downscaling of surface soil moisture retrieval by combining MODIS/Landsat and in situ measurements. Remote Sens. 2018, 10, 210. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Zhan, X. Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resour. Res. 2019, 55, 324–344. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.W.; Bindlish, R.; Jackson, T.J. A global 1-km downscaled SMAP soil moisture product based on thermal inertia theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
- Kellogg, K.; Hoffman, P.; Standley, S.; Shaffer, S.; Rosen, P.; Edelstein, W.; Dunn, C.; Baker, C.; Barela, P.; Shen, Y. NASA-ISRO synthetic aperture radar (NISAR) mission. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–21. [Google Scholar]
Technique | Satellite | Challenge | Application | Literature |
---|---|---|---|---|
Optical satellite imagery | GeoEye IKONOS Landsat Quickbird Worldview |
| Identification of ground failures | [31,48,49,50] |
Pixel-based or object-based identification of structural damage | [44,45] | |||
Synthetic aperture radar | ALOS CSK COSMO ENVISAT Sentinel |
| Measurement of ground movements and slip across faults | [46,51,52] |
Detection of surface change | [40,53] | |||
Pixel-based identification of structural damage | [47,54,55] |
Platform | Product | Spatial Resolution | Temporal Resolution | Unit |
---|---|---|---|---|
SMAP | Soil moisture | 9 km | 1–3 days | cm3/cm3 |
GLDAS | Soil moisture | 0.25° | 3-hourly | kg/m2 |
GPM | Precipitation | 0.1° | Half-hourly | mm |
Study Region | Earthquake Name | Pre-Event SMAP Data | Event Date | Post-Event SMAP Data |
---|---|---|---|---|
Croatia | Petrinja, Mw 6.4 | 29 December 2020 | 29 December 2020 | 30 December 2020 |
Greece | Samos, Mw 7 | 30 October 2020 | 30 October 2020 | 2 November 2020 |
Turkey | Elazig, Mw 6.7 | 23 January 2020 | 24 January 2020 | 26 January 2020 |
Indonesia | Palu, Mw 7.5 | 27 September 2018 | 28 September 2018 | 30 September 2018 |
Mexico | Puebla, Mw 7.1 | 17 September 2017 | 19 September 2017 | 20 September 2017 |
New Zealand | Kaikoura, Mw 6.4 | 12 November 2016 | 13 November 2016 | 15 November 2016 |
Italy | Accumoli, Mw 6.2 | 23 August 2016 | 24 August 2016 | 24 August 2016 |
Ecuador | Muisne, Mw 7.8 | 16 April 2016 | 16 April 2016 | 18 April 2016 |
Taiwan | Meinong, Mw 6.4 | 5 February 2016 | 5 February 2016 | 6 February 2016 |
Chile | Illapel, Mw 7.8 | 16 September 2015 | 16 September 2015 | 19 September 2015 |
Nepal | Gorkha, Mw 8.3 | 23 April 2015 | 25 April 2015 | 26 April 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farahani, A.; Moradikhaneghahi, M.; Ghayoomi, M.; Jacobs, J.M. Application of Soil Moisture Active Passive (SMAP) Satellite Data in Seismic Response Assessment. Remote Sens. 2022, 14, 4375. https://doi.org/10.3390/rs14174375
Farahani A, Moradikhaneghahi M, Ghayoomi M, Jacobs JM. Application of Soil Moisture Active Passive (SMAP) Satellite Data in Seismic Response Assessment. Remote Sensing. 2022; 14(17):4375. https://doi.org/10.3390/rs14174375
Chicago/Turabian StyleFarahani, Ali, Mahsa Moradikhaneghahi, Majid Ghayoomi, and Jennifer M. Jacobs. 2022. "Application of Soil Moisture Active Passive (SMAP) Satellite Data in Seismic Response Assessment" Remote Sensing 14, no. 17: 4375. https://doi.org/10.3390/rs14174375
APA StyleFarahani, A., Moradikhaneghahi, M., Ghayoomi, M., & Jacobs, J. M. (2022). Application of Soil Moisture Active Passive (SMAP) Satellite Data in Seismic Response Assessment. Remote Sensing, 14(17), 4375. https://doi.org/10.3390/rs14174375