Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Statistical Analyses
3. Results and Discussion
3.1. Climatology and Seasonal Cycles of SST and SIC
3.2. Phenology of SST and Sea-Ice Cover Duration
3.3. Spatio-Temporal Trends in Ocean and Atmosphere Warming and SIC Reduction
3.4. Interannual Variability of SST and SIC and Their Relation to Large-Scale Teleconnection Patterns
3.5. Correlation Analysis between SST/SIC and Local-Scale Atmospheric Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Schweiger, A.J.; Wood, K.R.; Zhang, J. Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction. J. Clim. 2019, 32, 4731–4752. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The emergence of surface-based Arctic amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef]
- Kohnemann, S.H.E.; Heinemann, G.; Bromwich, D.H.; Gutjahr, O. Extreme Warming in the Kara Sea and Barents Sea during the Winter Period 2000–16. J. Clim. 2017, 30, 8913–8927. [Google Scholar] [CrossRef]
- Stroeve, J.; Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Serreze, M.C.; Meier, W.N. The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 2019, 1436, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Chang. 2018, 8, 634–639. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Parkinson, C.L. Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett. 2014, 41, 4316–4322. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.C.; Markus, T.; Boisvert, L.; Miller, J.; Barrett, A. Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett. 2014, 41, 1216–1225. [Google Scholar] [CrossRef]
- Lebrun, M.; Vancoppenolle, M.; Madec, G.; Massonnet, F. Arctic sea-ice-free season projected to extend into autumn. Cryosphere 2019, 13, 79–96. [Google Scholar] [CrossRef]
- Schlichtholz, P. Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming. Sci. Rep. 2019, 9, 13692. [Google Scholar] [CrossRef]
- Årthun, M.; Onarheim, I.H.; Dörr, J.; Eldevik, T. The Seasonal and Regional Transition to an Ice-Free Arctic. Geophys. Res. Lett. 2021, 48, e2020GL090825. [Google Scholar] [CrossRef]
- Onarheim, I.H.; Eldevik, T.; Smedsrud, L.H.; Stroeve, J.C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 2018, 31, 4917–4932. [Google Scholar] [CrossRef]
- Årthun, M.; Eldevik, T.; Smedsrud, L.H.; Skagseth, Ø.; Ingvaldsen, R.B. Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat. J. Clim. 2012, 25, 4736–4743. [Google Scholar] [CrossRef]
- Oziel, L.; Neukermans, G.; Ardyna, M.; Lancelot, C.; Tison, J.-L.; Wassmann, P.; Sirven, J.; Ruiz-Pino, D.; Gascard, J.-C. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. J. Geophys. Res. Ocean. 2017, 122, 5121–5139. [Google Scholar] [CrossRef]
- Herbaut, C.; Houssais, M.N.; Close, S.; Blaizot, A.C. Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep. Res. Part I Oceanogr. Res. Pap. 2015, 106, 97–115. [Google Scholar] [CrossRef]
- Mohamed, B.; Nilsen, F.; Skogseth, R. Marine Heatwaves Characteristics in the Barents Sea Based on High Resolution Satellite Data (1982–2020). Front. Mar. Sci. 2022, 9, 1–17. [Google Scholar] [CrossRef]
- Skagseth, Ø.; Eldevik, T.; Årthun, M.; Asbjørnsen, H.; Lien, V.S.; Smedsrud, L.H. Reduced efficiency of the Barents Sea cooling machine. Nat. Clim. Chang. 2020, 10, 661–666. [Google Scholar] [CrossRef]
- Pecuchet, L.; Jørgensen, L.L.; Dolgov, A.V.; Eriksen, E.; Husson, B.; Skern-Mauritzen, M.; Primicerio, R. Spatio-temporal turnover and drivers of bentho-demersal community and food web structure in a high-latitude marine ecosystem. Divers. Distrib. 2022, 00, 1–18. [Google Scholar] [CrossRef]
- Husson, B.; Lind, S.; Fossheim, M.; Kato-Solvang, H.; Skern-Mauritzen, M.; Pécuchet, L.; Ingvaldsen, R.B.; Dolgov, A.V.; Primicerio, R. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. Glob. Chang. Biol. 2022, 28, 3728–3744. [Google Scholar] [CrossRef]
- Schlichtholz, P. Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas. Geophys. Res. Lett. 2011, 38, 5705. [Google Scholar] [CrossRef]
- Koenigk, T.; Mikolajewicz, U.; Jungclaus, J.H.; Kroll, A. Sea ice in the Barents Sea: Seasonal to interannual variability and climate feedbacks in a global coupled model. Clim. Dyn. 2009, 32, 1119–1138. [Google Scholar] [CrossRef]
- Efstathiou, E.; Eldevik, T.; Årthun, M.; Lind, S. Spatial Patterns, Mechanisms, and Predictability of Barents Sea Ice Change. J. Clim. 2022, 35, 2961–2973. [Google Scholar] [CrossRef]
- Sorteberg, A.; Kvingedal, B. Atmospheric Forcing on the Barents Sea Winter Ice Extent. J. Clim. 2006, 19, 4772–4784. [Google Scholar] [CrossRef]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea. Geophys. Res. Lett. 2016, 43, 5233–5242. [Google Scholar] [CrossRef]
- Onarheim, I.H.; Eldevik, T.; Årthun, M.; Ingvaldsen, R.B.; Smedsrud, L.H. Skillful prediction of Barents Sea ice cover. Geophys. Res. Lett. 2015, 42, 5364–5371. [Google Scholar] [CrossRef]
- Lien, V.S.; Schlichtholz, P.; Skagseth, Ø.; Vikebø, F.B. Wind-Driven Atlantic Water Flow as a Direct Mode for Reduced Barents Sea Ice Cover. J. Clim. 2017, 30, 803–812. [Google Scholar] [CrossRef]
- Chernokulsky, A.V.; Esau, I.; Bulygina, O.N.; Davy, R.; Mokhov, I.I.; Outten, S.; Semenov, V.A. Climatology and Interannual Variability of Cloudiness in the Atlantic Arctic from Surface Observations since the Late Nineteenth Century. J. Clim. 2017, 30, 2103–2120. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, X.; Wang, Z. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait. Clim. Dyn. 2019, 52, 2235–2246. [Google Scholar] [CrossRef]
- Boisvert, L.N.; Petty, A.A.; Stroeve, J.C. The Impact of the Extreme Winter 2015/16 Arctic Cyclone on the Barents–Kara Seas. Mon. Weather Rev. 2016, 144, 4279–4287. [Google Scholar] [CrossRef]
- Schlichtholz, P. Local Wintertime Tropospheric Response to Oceanic Heat Anomalies in the Nordic Seas Area. J. Clim. 2014, 27, 8686–8706. [Google Scholar] [CrossRef]
- Woods, C.; Caballero, R. The Role of Moist Intrusions in Winter Arctic Warming and Sea Ice Decline. J. Clim. 2016, 29, 4473–4485. [Google Scholar] [CrossRef]
- Zhang, X.; Sorteberg, A.; Zhang, J.; Gerdes, R.; Comiso, J.C. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett. 2008, 35, 22701. [Google Scholar] [CrossRef]
- Yashayaev, I.; Seidov, D. The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas. Prog. Oceanogr. 2015, 132, 68–127. [Google Scholar] [CrossRef]
- Skagseth, Ø.; Furevik, T.; Ingvaldsen, R.; Loeng, H.; Mork, K.A.; Orvik, K.A.; Ozhigin, V. Volume and Heat Transports to the Arctic Ocean Via the Norwegian and Barents Seas. In Arctic–Subarctic Ocean Fluxes; Springer: Dordrecht, The Netherlands, 2008; pp. 45–64. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 2006, 33, 12704. [Google Scholar] [CrossRef]
- Levitus, S.; Matishov, G.; Seidov, D.; Smolyar, I. Barents Sea multidecadal variability. Geophys. Res. Lett. 2009, 36, 19604. [Google Scholar] [CrossRef]
- Oziel, L.; Sirven, J.; Gascard, J.C. The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Sci. 2016, 12, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation. Geophys. Monogr. Ser. 2003, 134, 1–35. [Google Scholar] [CrossRef]
- Chafik, L.; Nilsson, J.; Skagseth, Ø.; Lundberg, P. On the flow of Atlantic water and temperature anomalies in the Nordic Seas toward the Arctic Ocean. J. Geophys. Res. Ocean. 2015, 120, 7897–7918. [Google Scholar] [CrossRef]
- Muilwijk, M.; Smedsrud, L.H.; Ilicak, M.; Drange, H. Atlantic Water Heat Transport Variability in the 20th Century Arctic Ocean From a Global Ocean Model and Observations. J. Geophys. Res. Ocean. 2018, 123, 8159–8179. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- King, J.; Spreen, G.; Gerland, S.; Haas, C.; Hendricks, S.; Kaleschke, L.; Wang, C. Sea-ice thickness from field measurements in the northwestern Barents Sea. J. Geophys. Res. Ocean. 2017, 122, 1497–1512. [Google Scholar] [CrossRef]
- Pavlova, O.; Pavlov, V.; Gerland, S. The impact of winds and sea surface temperatures on the Barents Sea ice extent, a statistical approach. J. Mar. Syst. 2014, 130, 248–255. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, J.; Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Sci. Total Environ. 2021, 753, 142046. [Google Scholar] [CrossRef]
- Duan, C.; Dong, S.; Xie, Z.; Wang, Z. Temporal variability and trends of sea ice in the Kara Sea and their relationship with atmospheric factors. Polar Sci. 2019, 20, 136–147. [Google Scholar] [CrossRef]
- Jiang, Z.; Feldstein, S.B.; Lee, S. Two Atmospheric Responses to Winter Sea Ice Decline Over the Barents-Kara Seas. Geophys. Res. Lett. 2021, 48, e2020GL090288. [Google Scholar] [CrossRef]
- Sakshaug, E.; Johnsen, G.; Kristiansen, S.; Von, C.; Rey, F.; Slagstad, D.; Thingstad, F. Ecosystem Barents Sea; Tapir Academic Press: Trondheim, Norway, 2009; ISBN 9788251924610. [Google Scholar]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Thomson, R.E.; Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 9780123877833. [Google Scholar]
- Meyssignac, B.; Piecuch, C.G.; Merchant, C.J.; Racault, M.F.; Palanisamy, H.; MacIntosh, C.; Sathyendranath, S.; Brewin, R. Causes of the Regional Variability in Observed Sea Level, Sea Surface Temperature and Ocean Colour Over the Period 1993–2011. Surv. Geophys. 2017, 38, 187–215. [Google Scholar] [CrossRef]
- Barton, B.I.; Lenn, Y.D.; Lique, C. Observed atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice. J. Phys. Oceanogr. 2018, 48, 1849–1866. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Smit, A.J. Climate change in coastal waters: Time series properties affecting trend estimation. J. Clim. 2016, 29, 9113–9124. [Google Scholar] [CrossRef]
- Levine, R.A.; Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2000; Volume 95, ISBN 0123850223. [Google Scholar]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography; Newnes: London, UK, 1997; ISBN 0080314341. [Google Scholar]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Greene, C.A.; Thirumalai, K.; Kearney, K.A.; Delgado, J.M.; Schwanghart, W.; Wolfenbarger, N.S.; Thyng, K.M.; Gwyther, D.E.; Gardner, A.S.; Blankenship, D.D. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosys. 2019, 20, 3774–3781. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, H.; Huang, H.; Liu, Y.; Liu, Y.; Liang, X.; Fu, M.; Zhang, Z. Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016. J. Oceanol. Limnol. 2018, 37, 18–37. [Google Scholar] [CrossRef]
- Krauzig, N.; Falco, P.; Zambianchi, E. Contrasting surface warming of a marginal basin due to large-scale climatic patterns and local forcing. Sci. Rep. 2020, 10, 17648. [Google Scholar] [CrossRef]
- Pärn, O.; Friedland, R.; Rjazin, J.; Stips, A. Regime shift in sea-ice characteristics and impact on the spring bloom in the Baltic Sea. Oceanologia 2021, 64, 312–326. [Google Scholar] [CrossRef]
- Stammerjohn, S.E.; Martinson, D.G.; Smith, R.C.; Yuan, X.; Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. Ocean. 2008, 113, 3–90. [Google Scholar] [CrossRef]
- von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Asbjørnsen, H.; Årthun, M.; Skagseth, Ø.; Eldevik, T. Mechanisms Underlying Recent Arctic Atlantification. Geophys. Res. Lett. 2020, 47, e2020GL088036. [Google Scholar] [CrossRef]
- Koul, V.; Brune, S.; Baehr, J.; Schrum, C. Impact of Decadal Trends in the Surface Climate of the North Atlantic Subpolar Gyre on the Marine Environment of the Barents Sea. Front. Mar. Sci. 2022, 8, 2065. [Google Scholar] [CrossRef]
- Onarheim, I.H.; Smedsrud, L.H.; Ingvaldsen, R.B.; Nilsen, F. Loss of sea ice during winter north of Svalbard. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2014, 66, 1–9. [Google Scholar] [CrossRef]
- Smedsrud, L.H.; Esau, I.; Ingvaldsen, R.B.; Eldevik, T.; Haugan, P.M.; Li, C.; Lien, V.S.; Olsen, A.; Omar, A.M.; Risebrobakken, B.; et al. The role of the Barents Sea in the Arctic climate system. Rev. Geophys. 2013, 51, 415–449. [Google Scholar] [CrossRef]
- Ivanov, V.; Alexeev, V.; Koldunov, N.V.; Repina, I.; Sandø, A.B.; Smedsrud, L.H.; Smirnov, A. Arctic Ocean Heat Impact on Regional Ice Decay: A Suggested Positive Feedback. J. Phys. Oceanogr. 2016, 46, 1437–1456. [Google Scholar] [CrossRef]
- Aagaarda, K.; Foldvik, A.; Hillman, S.R. The West Spitsbergen Current: Disposition and water mass transformation. J. Geophys. Res. Ocean. 1987, 92, 3778–3784. [Google Scholar] [CrossRef]
- Nilsen, F.; Skogseth, R.; Vaardal-Lunde, J.; Inall, M. A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. J. Phys. Oceanogr. 2016, 46, 1209–1230. [Google Scholar] [CrossRef]
- Lien, V.S.; Vikebø, F.B.; Skagseth, Ø. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun. 2013, 4, 1488. [Google Scholar] [CrossRef]
- Torres, R.R.; Tsimplis, M.N. Sea-level trends and interannual variability in the Caribbean Sea. J. Geophys. Res. Ocean. 2013, 118, 2934–2947. [Google Scholar] [CrossRef]
- Mohamed, B.; Skliris, N. Steric and atmospheric contributions to interannual sea level variability in the eastern mediterranean sea over 1993–2019. Oceanologia 2022, 64, 50–62. [Google Scholar] [CrossRef]
- Welch, P.D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Perlwitz, J.; Knutson, T.; Kossin, J.P.; LeGrande, A.N. Chapter 5: Large-Scale Circulation and Climate Variability. In Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 161–184. [Google Scholar] [CrossRef]
- Årthun, M.; Eldevik, T. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J. Clim. 2016, 29, 689–704. [Google Scholar] [CrossRef]
Correlation | AMO/AMO (6) | NAO/NAO (6) | EAP/EAP (6) |
---|---|---|---|
SST/SST (6) | 0.52 (0.59@−3)/0.75 | 0.04/−0.15 | 0.54/0.90 |
SSTICZ/SSTICZ (6) | 0.45 (0.51@−3)/0.67 | 0.05/−0.10 | 0.45/0.86 |
SSTIFZ/SSTIFZ (6) | 0.55 (0.64@−3)/0.79 | 0.03/−0.16 | 0.60/0.92 |
SIC/SIC (6) | −0.43 (−0.54@−3)/−0.74 | 0.04/0.23 | −0.35/−0.83 |
PC1SST/PC1SST (6) | 0.53 (0.60@−3)/0.75 | 0.04/−0.16 | 0.56/0.91 |
PC2SST/PC2SST (6) | −0.27/−0.30 | 0.09/0.45 | −0.19/−0.24 |
PC1SIC/PC1SIC (6) | −0.47 (−0.57@−3)/−0.76 | 0.06/0.26 | −0.44/−0.87 |
PC2SIC/PC2SIC (6) | −0.12/−0.07 | −0.02/0.06 | −0.30/−0.31 |
Correlation | SIC | SST | SAT | U10 | V10 | |
---|---|---|---|---|---|---|
SIC | 1 | −0.93 | −0.97 | −0.23 | −0.35 | Non-Detrended |
SST | −0.82 | 1 | 0.94 | 0.20 | 0.34 | |
SAT | −0.93 | 0.85 | 1 | 0.28 | 0.42 | |
U10 | −0.21 | 0.16 | 0.28 | 1 | - | |
V10 | −0.57 | 0.59 | 0.69 | - | 1 | |
Detrended |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, B.; Nilsen, F.; Skogseth, R. Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea. Remote Sens. 2022, 14, 4413. https://doi.org/10.3390/rs14174413
Mohamed B, Nilsen F, Skogseth R. Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea. Remote Sensing. 2022; 14(17):4413. https://doi.org/10.3390/rs14174413
Chicago/Turabian StyleMohamed, Bayoumy, Frank Nilsen, and Ragnheid Skogseth. 2022. "Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea" Remote Sensing 14, no. 17: 4413. https://doi.org/10.3390/rs14174413
APA StyleMohamed, B., Nilsen, F., & Skogseth, R. (2022). Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea. Remote Sensing, 14(17), 4413. https://doi.org/10.3390/rs14174413