Long-Term Variation Study of Fine-Mode Particle Size and Regional Characteristics Using AERONET Data
Abstract
:1. Introduction
2. Methodology
2.1. Study Sites
2.2. AOD Separation into Dust, Coarse- and Fine-Mode Pollution Using Depolarization Ratio
2.3. Annual Trend Analysis via Linear Regression Analysis and MK-Test
3. Results and Discussion
3.1. Aerosol-Type Classification
3.2. Annual Trend of Dust, Coarse- and Fine-Mode Pollution AOD
3.3. Ångström Exponent and FMF: Annual Trends
4. Summary and Conclusions
- The change characteristics of , , and are different for each region. In Europe and Asia, the decrease in was remarkable due to effects caused by new air quality policies. The increased near the Sahara region.
- The mainly decreased in Europe and Southeast Asia, whereas decreased in the Middle East and Northeast Asia. and are related to non-dust AOD. Thus, we assume that changes related to the practical policymaking have on air pollution emissions.
- The mean size of particle size distribution became larger in Europe, the Middle East, and North Africa because of emissions of dust particles. On the other hand, the mean particle size became smaller in India and Southeast Asia. We assume that this reduction of particle size is primarily related to the change in the concentration of fine-mode particles.
- The changes of show that the size of fine-mode particles emitted from anthropogenic pollution most likely became smaller compared to particle size in past times in the regions we investigated here. We believed that the size change of fine-mode particles might be related to secondary aerosols, and it can cause adverse effects on visibility and human health.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanathan, V.; Ramana, M.V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D. Warming trends in Asia amplified by brown cloud solar absorption. Nature 2007, 448, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Arneth, A. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organization. WHO Expert Consultation: Available Evidence for the Future Update of the WHO Global Air Quality Guidelines (AQGs): Meeting Report Bonn, Germany 29 September–1 October 2015; No. WHO/EURO: 2016-2665-42421-58848; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2016. [Google Scholar]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide: Executive Summary; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Collaud Coen, M.; Andrews, E.; Asmi, A.; Baltensperger, U.; Bukowiecki, N.; Day, D.; Fiebig, M.; Fjaeraa, A.M.; Flentje, H.; Hyvärinen, A.; et al. Aerosol decadal trends—Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmos. Chem. Phys. 2013, 13, 869–894. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Dubovik, O.; Lacis, A.A. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys. 2014, 14, 12271–12289. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Zhang, F.; Li, D.; Xie, Y.; Xu, H. Comparison of aerosol properties over Beijing and Kanpur: Optical, physical properties and aerosol component composition retrieved from 12 years ground-based Sun-sky radiometer remote sensing data. J. Geophys. Res. Atmos. 2015, 120, 1520–1535. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, N.; Anshumali. Global trends of columnar and vertically distributed properties of aerosols with emphasis on dust, polluted dust and smoke—Inferences from 10-year long CALIOP observations. Remote Sens. Environ. 2018, 208, 120–132. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, L.; Zhao, W.; Xiong, Q.; Zhao, W.; Yan, X. Comparison of Ground-Based PM2.5 and PM10 Concentrations in China, India, and the U.S. Int. J. Environ. Res. Public Health 2018, 15, 1382. [Google Scholar] [CrossRef]
- Pozzer, A.; Bacer, S.; Sappadina, S.D.Z.; Predicatori, F.; Caleffi, A. Long-term concentrations of fine particulate matter and impact on human health in Verona, Italy. Atmos. Pollut. Res. 2019, 10, 731–738. [Google Scholar] [CrossRef]
- Chirasophon, S.; Pochanart, P. The Long-term Characteristics of PM10 and PM2.5 in Bangkok, Thailand. Asian J. Atmos. Environ. 2020, 14, 73–83. [Google Scholar] [CrossRef]
- Liu, J.; Ren, C.; Huang, X.; Nie, W.; Wang, J.; Sun, P.; Chi, X.; Ding, A. Increased Aerosol Extinction Efficiency Hinders Visibility Improvement in Eastern China. Geophys. Res. Lett. 2020, 47, e2020GL090167. [Google Scholar] [CrossRef]
- Lee, K.-H.; Muller, D.; Noh, Y.-M.; Shin, S.-K.; Shin, D.-H. Depolarization ratio retrievals using AERONET sun photometer data. J. Opt. Soc. Korea 2010, 14, 178–184. [Google Scholar] [CrossRef]
- Burton, S.; Vaughan, M.; Ferrare, R.; Hostetler, C. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data. Atmos. Meas. Tech. 2014, 7, 419–436. [Google Scholar] [CrossRef]
- Han, T.; Xu, W.; Chen, C.; Liu, X.; Wang, Q.; Li, J.; Zhao, X.; Du, W.; Wang, Z.; Sun, Y. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China. J. Geophys. Res. Atmos. 2015, 120, 12–281. [Google Scholar] [CrossRef]
- Hatakeyama, S. Aerosols. In Air Pollution Impacts on Plants in East Asia; Izuta, T., Ed.; Springer: Tokyo, Japan, 2017; pp. 21–42. [Google Scholar] [CrossRef]
- Kitamori, Y.; Mochida, M.; Kawamura, K. Assessment of the aerosol water content in urban atmospheric particles by the hygroscopic growth measurements in Sapporo, Japan. Atmos. Environ. 2009, 43, 3416–3423. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Li, Y.-S. Influences of Traffic Emissions and Meteorological Conditions on Ambient PM10 and PM2.5 Levels at a Highway Toll Station. Aerosol Air Qual. Res. 2010, 10, 456–462. [Google Scholar] [CrossRef]
- Xue, J.; Griffith, S.M.; Yu, X.; Lau, A.K.H.; Yu, J.Z. Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site. Atmos. Environ. 2014, 99, 24–31. [Google Scholar] [CrossRef]
- Mesquita, S.R.; Dachs, J.; van Drooge, B.L.; Castro-Jimenez, J.; Navarro-Martin, L.; Barata, C.; Vieira, N.; Guimaraes, L.; Pina, B. Toxicity assessment of atmospheric particulate matter in the Mediterranean and Black Seas open waters. Sci. Total Environ. 2016, 545, 163–170. [Google Scholar] [CrossRef]
- Tan, H.; Cai, M.; Fan, Q.; Liu, L.; Li, F.; Chan, P.W.; Deng, X.; Wu, D. An analysis of aerosol liquid water content and related impact factors in Pearl River Delta. Sci. Total Environ. 2017, 579, 1822–1830. [Google Scholar] [CrossRef]
- Xu, L.; Duan, F.; He, K.; Ma, Y.; Zhu, L.; Zheng, Y.; Huang, T.; Kimoto, T.; Ma, T.; Li, H.; et al. Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing. Environ. Pollut. 2017, 227, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Du, C.; Zhanzakova, A.; Cheng, T.; Yang, X.; Wang, L.; Fu, H.; Chen, J.; Zhang, S. Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study. Sci. Total Environ. 2018, 634, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Kudo, S.; Iijima, A.; Kumagai, K.; Tago, H.; Ichijo, M. An exhaustive classification for the seasonal variation of organic peaks in the atmospheric fine particles obtained by a gas chromatography/mass spectrometry. Environ. Technol. Innov. 2018, 12, 14–26. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Xu, J.; Wen, J.; Han, J.; Wang, K.; Shi, G.; Feng, Y.; Ivey, C.E.; Wang, Y.; et al. Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Sci. Total Environ. 2019, 646, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Cherian, R.; Quaas, J. Trends in AOD, Clouds, and Cloud Radiative Effects in Satellite Data and CMIP5 and CMIP6 Model Simulations Over Aerosol Source Regions. Geophys. Res. Lett. 2020, 47, e2020GL087132. [Google Scholar] [CrossRef]
- Dehkhoda, N.; Noh, Y.; Joo, S. Long-Term Variation of Black Carbon Absorption Aerosol Optical Depth from AERONET Data over East Asia. Remote Sens. 2020, 12, 3551. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Lapyonok, T.; Sinyuk, A.; Mishchenko, M.; Yang, P.; Slutsker, I. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett. 2002, 29, 54-1–54-4. [Google Scholar] [CrossRef]
- Omar, A.H.; Won, J.G.; Winker, D.M.; Yoon, S.C.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Atmos. 2005, 110, D10S14. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007, 112, D13. [Google Scholar] [CrossRef] [Green Version]
- Mielonen, T.; Arola, A.; Komppula, M.; Kukkonen, J.; Koskinen, J.; De Leeuw, G.; Lehtinen, K. Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophys. Res. Lett. 2009, 36, 18. [Google Scholar] [CrossRef]
- Russell, P.; Bergstrom, R.; Shinozuka, Y.; Clarke, A.; DeCarlo, P.; Jimenez, J.; Livingston, J.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Noh, Y.M.; Müller, D.; Mattis, I.; Lee, H.; Kim, Y.J. Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: Multiwavelength Raman lidar observations of East Asian aerosol types over Korea. J. Geophys. Res. Atmos. 2011, 116, D6. [Google Scholar] [CrossRef]
- Boselli, A.; Caggiano, R.; Cornacchia, C.; Madonna, F.; Mona, L.; Macchiato, M.; Pappalardo, G.; Trippetta, S. Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site. Atmos. Res. 2012, 104, 98–110. [Google Scholar] [CrossRef]
- Rossini, P.; De Lazzari, A.; Guerzoni, S.; Molinaroli, E.; Rampazzo, G.; Zancanaro, A. Atmospheric input of organic pollutants to the Venice Lagoon. Ann. Chim. 2001, 91, 491–501. [Google Scholar]
- Rampazzo, G.; Masiol, M.; Visin, F.; Rampado, E.; Pavoni, B. Geochemical characterization of PM10 emitted by glass factories in Murano, Venice (Italy). Chemosphere 2008, 71, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Masiol, M.; Rampazzo, G.; Ceccato, D.; Squizzato, S.; Pavoni, B. Characterization of PM10 sources in a coastal area near Venice (Italy): An application of factor-cluster analysis. Chemosphere 2010, 80, 771–778. [Google Scholar] [CrossRef]
- Gregoris, E.; Barbaro, E.; Morabito, E.; Toscano, G.; Donateo, A.; Cesari, D.; Contini, D.; Gambaro, A. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air. Environ. Sci. Pollut. Res. 2016, 23, 6951–6959. [Google Scholar] [CrossRef]
- Martin, C. Environment: Venice’s fragile lagoon. Nature 2010, 467, 529. [Google Scholar] [CrossRef]
- Vouitsis, I.; Amanatidis, S.; Ntziachristos, L.; Kelessis, A.; Petrakakis, M.; Stamos, I.; Mitsakis, E.; Samaras, Z. Daily and seasonal variation of traffic related aerosol pollution in Thessaloniki, Greece, during the financial crisis. Atmos. Environ. 2015, 122, 577–587. [Google Scholar] [CrossRef]
- Balarabe, M.; Abdullah, K.; Nawawi, M. Seasonal Variations of Aerosol Optical Properties and Identification of Different Aerosol Types Based on AERONET Data over Sub-Sahara West-Africa. Atmos. Clim. Sci. 2016, 6, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Ram, K.; Sarin, M.; Tripathi, S. A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability. J. Geophys. Res. Atmos. 2010, 115, D4. [Google Scholar] [CrossRef]
- Shimizu, A.; Sugimoto, N.; Matsui, I.; Arao, K.; Uno, I.; Murayama, T.; Kagawa, N.; Aoki, K.; Uchiyama, A.; Yamazaki, A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res. Atmos. 2004, 109, D19. [Google Scholar] [CrossRef]
- Kashima, S.; Yorifuji, T.; Bae, S.; Honda, Y.; Lim, Y.-H.; Hong, Y.-C. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos. Environ. 2016, 128, 20–27. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Kim, Y.; Heo, J.; Kim, S.-W.; Jeon, K.; Yi, S.-M.; Hopke, P.K. Source apportionment of PM2.5 in Seoul, South Korea and Beijing, China using dispersion normalized PMF. Sci. Total Environ. 2022, 833, 155056. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Sheen, P.-C.; Chen, E.-R.; Liu, Y.-K.; Wu, T.-N.; Yang, C.-Y. Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ. Res. 2004, 95, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Munoz, O.; Veihelmann, B. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111, D11208. [Google Scholar] [CrossRef]
- Noh, Y.; Müller, D.; Lee, K.; Kim, K.; Lee, K.; Shimizu, A.; Sano, I.; Park, C.B. Depolarization ratios retrieved by AERONET sun–sky radiometer data and comparison to depolarization ratios measured with lidar. Atmos. Chem. Phys. 2017, 17, 6271–6290. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114, D13. [Google Scholar] [CrossRef]
- Noh, Y.M. Single-scattering albedo profiling of mixed Asian dust plumes with multiwavelength Raman lidar. Atmos. Environ. 2014, 95, 305–317. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-K.; Tesche, M.; Kim, K.; Kezoudi, M.; Tatarov, B.; Müller, D.; Noh, Y. On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product. Atmos. Chem. Phys. 2018, 18, 12735–12746. [Google Scholar] [CrossRef]
- Shin, S.-K.; Tesche, M.; Noh, Y.; Müller, D. Aerosol-type classification based on AERONET version 3 inversion products. Atmos. Meas. Tech. 2019, 12, 3789–3803. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates MAKESENS—The Excel Template Application; Report Code FMI-AQ-31; Finnish Meteorological Institute: Helsinki, Finland, 2002. [Google Scholar]
- Srivastava, A.; Saran, S. Comprehensive study on AOD trends over the Indian subcontinent: A statistical approach. Int. J. Remote Sens. 2017, 38, 5127–5149. [Google Scholar] [CrossRef]
- Logothetis, S.-A.; Salamalikis, V.; Kazantzidis, A. Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET Version 3. Atmos. Res. 2020, 239, 104893. [Google Scholar] [CrossRef]
- Janjai, S.; Nunez, M.; Masiri, I.; Wattan, R.; Buntoung, S.; Jantarach, T.; Promsen, W. Aerosol optical properties at four sites in Thailand. Atmos. Clim. Sci. 2012, 2, 441. [Google Scholar] [CrossRef]
- Bridhikitti, A.; Overcamp, T.J. Optical characteristics of southeast Asia’s regional aerosols and their sources. J. Air Waste Manag. Assoc. 2011, 61, 747–754. [Google Scholar] [CrossRef]
- Shin, S.-K.; Müller, D.; Lee, C.; Lee, K.; Shin, D.; Kim, Y.; Noh, Y. Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia. Atmos. Chem. Phys. 2015, 15, 6707–6720. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, T.; Boiyo, R.; Chen, S.; Lu, Z.; Wu, Y.; Zhao, Y. Vertical Structures of Dust Aerosols over East Asia Based on CALIPSO Retrievals. Remote Sens. 2019, 11, 701. [Google Scholar] [CrossRef]
- El-Metwally, M.; Korany, M.; Boraiy, M.; Ebada, E.; Wahab, M.A.; Hungershoefer, K.; Alfaro, S. Evidence of anthropization of aerosols in the Saharan and peri-Saharan regions: Implications for the atmospheric transfer of solar radiation. J. Atmos. Sol. Terr. Phys. 2020, 199, 105199. [Google Scholar] [CrossRef]
- Maghrabi, A.; Alotaibi, R. Long-term variations of AOD from an AERONET station in the central Arabian Peninsula. Theor. Appl. Climatol. 2018, 134, 1015–1026. [Google Scholar] [CrossRef]
- Klingmüller, K.; Pozzer, A.; Metzger, S.; Stenchikov, G.L.; Lelieveld, J. Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. 2016, 16, 5063–5073. [Google Scholar] [CrossRef]
- Wang, S.-H.; Welton, E.J.; Holben, B.N.; Tsay, S.-C.; Lin, N.-H.; Giles, D.; Buntoung, S.; Chantara, S.; Wiriya, W.; Stewart, S.A.; et al. Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign. Aerosol Air Qual. Res. 2015, 15, 2037–2050. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.; Zhang, X.; Guo, M.; Miura, M.; Xiao, Y. Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016. Environ. Pollut. 2019, 254, 112949. [Google Scholar] [CrossRef]
- Khan, R.; Kumar, K.R.; Zhao, T. The climatology of aerosol optical thickness and radiative effects in Southeast Asia from 18-years of ground-based observations. Environ. Pollut. 2019, 254, 113025. [Google Scholar] [CrossRef]
- Krasnov, H.; Katra, I.; Koutrakis, P.; Friger, M.D. Contribution of dust storms to PM10 levels in an urban arid environment. J. Air Waste Manag. Assoc. 2014, 64, 89–94. [Google Scholar] [CrossRef]
- Ogunjobi, K.O.; He, Z.; Simmer, C. Spectral aerosol optical properties from AERONET Sun-photometric measurements over West Africa. Atmos. Res. 2008, 88, 89–107. [Google Scholar] [CrossRef]
- Falaiye, A.; Babatunde, E.; Willoughby, A. Atmospheric aerosol loading at Ilorin, a tropical station. Afr. Rev. Phys. 2015, 9, 527–535. [Google Scholar]
- Chakraborty, A.; Bhattu, D.; Gupta, T.; Tripathi, S.N.; Canagaratna, M.R. Real-time measurements of ambient aerosols in a polluted Indian city: Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods. J. Geophys. Res. Atmos. 2015, 120, 9006–9019. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, T.; Gu, X.; Li, Z.; Wu, Y. Characteristics of aerosols over Beijing and Kanpur derived from the AERONET dataset. Atmos. Pollut. Res. 2016, 7, 162–169. [Google Scholar] [CrossRef]
- Joo, S.; Naghmeh, D.; Noh, Y. A Study on the Characteristic Variations of Fine Particle in Busan and Ulsan through Particle Extinction Efficiency Analysis. J. Korean Soc. Atmos. Environ. 2021, 37, 80–90. [Google Scholar] [CrossRef]
- Uno, I.; Wang, Z.; Itahashi, S.; Yumimoto, K.; Yamamura, Y.; Yoshino, A.; Takami, A.; Hayasaki, M.; Kim, B.-G. Paradigm shift in aerosol chemical composition over regions downwind of China. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Plaza, J.; Pujadas, M.; Gómez-Moreno, F.; Sánchez, M.; Artíñano, B. Mass size distributions of soluble sulfate, nitrate and ammonium in the Madrid urban aerosol. Atmos. Environ. 2011, 45, 4966–4976. [Google Scholar] [CrossRef]
Site | (440 nm) | (440 nm) | (440 nm) | (440 nm) | (440–870 nm) | (440–870 nm) | FMF |
---|---|---|---|---|---|---|---|
Thessaloniki | 0.48 ± 0.12 | 0.04 ± 0.08 | 0.04 ± 0.02 | 0.42 ± 0.14 | 1.49 ± 0.42 | 1.99 ± 0.23 | 0.91 ± 0.19 |
Venice | 0.54 ± 0.22 | 0.02 ± 0.05 | 0.02 ± 0.02 | 0.51 ± 0.22 | 1.51 ± 0.28 | 1.77 ± 0.27 | 0.96 ± 0.14 |
Erdemli | 0.51 ± 0.13 | 0.06 ± 0.10 | 0.06 ± 0.04 | 0.40 ± 0.12 | 1.23 ± 0.37 | 1.90 ± 0.19 | 0.87 ± 0.18 |
Cape Verde | 0.62 ± 0.25 | 0.41 ± 0.21 | 0.12 ± 0.05 | 0.19 ± 0.08 | 0.19 ± 0.16 | 1.56 ± 0.25 | 0.35 ± 0.15 |
Cinzana | 0.69 ± 0.34 | 0.46 ± 0.30 | 0.10 ± 0.07 | 0.23 ± 0.11 | 0.27 ± 0.21 | 1.63 ± 0.24 | 0.36 ± 0.18 |
Ilorin | 1.04 ± 0.48 | 0.40 ± 0.30 | 0.20 ± 0.14 | 0.51 ± 0.23 | 0.60 ± 0.31 | 1.90 ± 0.22 | 0.61 ± 0.20 |
Tamanrasset | 0.69 ± 0.36 | 0.53 ± 0.35 | 0.11 ± 0.06 | 0.17 ± 0.07 | 0.13 ± 0.09 | 1.59 ± 0.20 | 0.27 ± 0.15 |
Sede Boker | 0.49 ± 0.20 | 0.23 ± 0.22 | 0.08 ± 0.05 | 0.22 ± 0.09 | 0.57 ± 0.43 | 1.78 ± 0.27 | 0.56 ± 0.28 |
Mezaira | 0.56 ± 0.21 | 0.28 ± 0.23 | 0.09 ± 0.05 | 0.26 ± 0.10 | 0.54 ± 0.35 | 1.85 ± 0.19 | 0.53 ± 0.25 |
Ballia | 0.82 ± 0.31 | 0.13 ± 0.14 | 0.11 ± 0.07 | 0.61 ± 0.31 | 1.01 ± 0.34 | 1.83 ± 0.23 | 0.82 ± 0.19 |
Kanpur | 0.80 ± 0.34 | 0.13 ± 0.19 | 0.10 ± 0.06 | 0.60 ± 0.37 | 0.99 ± 0.39 | 1.76 ± 0.27 | 0.82 ± 0.23 |
Chiang Mai | 0.93 ± 0.54 | 0.01 ± 0.02 | 0.05 ± 0.04 | 0.88 ± 0.53 | 1.57 ± 0.19 | 1.81 ± 0.20 | 0.98 ± 0.11 |
Bangkok | 0.76 ± 0.33 | 0.01 ± 0.02 | 0.04 ± 0.02 | 0.71 ± 0.32 | 1.49 ± 0.19 | 1.74 ± 0.21 | 0.98 ± 0.10 |
Beijing | 1.22 ± 0.76 | 0.08 ± 0.16 | 0.10 ± 0.07 | 1.06 ± 0.76 | 1.14 ± 0.31 | 1.63 ± 0.31 | 0.90 ± 0.18 |
Seoul | 0.73 ± 0.37 | 0.05 ± 0.08 | 0.04 ± 0.04 | 0.65 ± 0.37 | 1.26 ± 0.29 | 1.68 ± 0.28 | 0.92 ± 0.15 |
Osaka | 0.58 ± 0.21 | 0.04 ± 0.08 | 0.04 ± 0.02 | 0.51 ± 0.21 | 1.36 ± 0.31 | 1.81 ± 0.22 | 0.92 ± 0.14 |
Taipei | 0.69 ± 0.30 | 0.01 ± 0.03 | 0.04 ± 0.02 | 0.64 ± 0.30 | 1.34 ± 0.20 | 1.59 ± 0.24 | 0.98 ± 0.09 |
Region | Site | (% Variation) | (% Variation) | (% Variation) | (% Variation) | FMF (% Variation) | (% Variation) | (% Variation) |
---|---|---|---|---|---|---|---|---|
Europe | Thessaloniki | −0.0055 (−17.63) | 0.0037 (112.29) | 0.0003 (11.94) | −0.0084 (−28.93) | −0.0111 (−18.22) | −0.0155 (−14.92) | 0.0073 (5.14) |
Venice | −0.0087 (−29.50) | 0.0012 (125.22) | 0.0000 (0.00) | −0.0096 (−35.01) | −0.0032 (−6.21) | −0.0040 (−4.78) | 0.0015 (1.52) | |
Erdemli | 0.0010 (2.15) | 0.0010 (17.24) | −0.0002 (−3.49) | 0.0005 (1.23) | −0.0029 (−15.62) | −0.0055 (−4.45) | −0.0060 (−3.19) | |
North Africa | Cape Verde | 0.0011 (2.78) | 0.0002 (0.77) | 0.0021 (28.71) | −0.0018 (−15.33) | −0.0025 (−11.39) | −0.0004 (−3.46) | 0.0101 (9.51) |
Cinzana | −0.0006 (−1.31) | 0.0008 (2.64) | 0.0004 (5.80) | −0.0019 (−12.64) | −0.0018 (−4.06) | −0.0030 (−16.82) | 0.0052 (4.75) | |
Ilorin | 0.0006 (0.63) | −0.0001 (−0.27) | −0.0015 (−8.37) | 0.0024 (5.19) | 0.0025 (9.36) | 0.0046 (8.67) | 0.0093 (5.43) | |
Tamanrasset | 0.0108 (13.99) | 0.0133 (22.47) | 0.0001 (0.83) | 0.0001 (0.54) | −0.0030 (−3.74) | −0.0035 (−24.11) | 0.0015 (0.85) | |
Middle East | Sede Boker | 0.0020 (6.11) | 0.0020 (12.33) | −0.0004 (−7.12) | 0.0008 (5.45) | −0.0017 (−5.35) | −0.0012 (−3.30) | 0.0052 (4.42) |
Mezaira | 0.0049 (9.62) | 0.0085 (34.15) | −0.0001 (−1.29) | −0.0014 (−5.76) | −0.0093 (−21.15) | −0.0157 (−30.47) | −0.0119 (−7.08) | |
India | Ballia | 0.0048 (5.79) | −0.0022 (−19.67) | 0.0011 (10.53) | 0.0055 (9.24) | 0.0046 (6.40) | 0.0050 (4.93) | −0.0047 (−2.59) |
Kanpur | 0.0069 (14.69) | −0.0018 (−23.47) | 0.0002 (3.46) | 0.0019 (5.39) | 0.0032 (7.27) | 0.0024 (4.08) | 0.0031 (3.02) | |
Southeast Asia | Chiang Mai | −0.0039 (−4.11) | 0.0000 (0.00) | −0.0000 (−0.00) | −0.0039 (−4.36) | −0.0022 (−0.91) | 0.0105 (6.68) | 0.0163 (8.99) |
Bangkok | −0.0012 (−1.57) | 0.0000 (0.00) | −0.0000 (−0.00) | −0.0018 (−2.52) | −0.0002 (−0.08) | 0.0119 (8.03) | 0.0175 (10.03) | |
Northeast Asia | Beijing | −0.0138 (−18.10) | 0.0011 (22.52) | −0.0005 (−8.21) | −0.0142 (−21.43) | −0.0023 (−4.65) | 0.0014 (1.96) | 0.0122 (11.92) |
Seoul | −0.0034 (−8.14) | −0.0017 (−56.03) | −0.0010 (−37.81) | −0.0011 (−2.95) | 0.0032 (5.91) | 0.0095 (13.94) | 0.0024 (2.57) | |
Osaka | −0.0096 (−14.94) | −0.0008 (−17.57) | −0.0008 (−18.37) | −0.0090 (−15.99) | −0.0020 (−2.06) | 0.0020 (1.30) | 0.0065 (3.19) | |
Taipei | −0.0049 (−9.53) | −0.0004 (−52.97) | −0.0008 (−29.45) | −0.0037 (−7.69) | 0.0009 (1.25) | 0.0104 (9.97) | 0.0069 (5.64) |
Region | Site | n | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p | S | Z | p | S | Z | p | S | Z | p | S | |||
Europe | Thessaloniki | 14 | −2.5183 * | 0.0118 | −0.005 | 1.3139 | 0.1889 | 0.0034 | 0.219 | 0.8267 | 0.0001 | −2.9562 * | 0.0031 | −0.008 |
Venice | 18 | −3.0302 * | 0.0024 | −0.0084 | 2.3484 * | 0.0189 | 0.0013 | −0.0758 | 0.9396 | −0.0001 | −3.3332 * | 0.0009 | −0.0109 | |
Erdemli | 10 | 0.1789 | 0.858 | 0.0009 | 0.3578 | 0.7205 | 0.0006 | −0.3578 | 0.7205 | −0.0009 | 0 | 1 | −0.0003 | |
North Africa | Cape Verde | 16 | 0 | 1 | 0 | 0.045 | 0.9641 | 0.0002 | 2.1161 * | 0.0343 | 0.0019 | −1.2156 | 0.2241 | −0.0012 |
Cinzana | 15 | −0.099 | 0.9212 | −0.0011 | −0.099 | 0.9212 | −0.0004 | 0 | 1 | 0.0002 | −1.1396 | 0.2545 | −0.0021 | |
Ilorin | 11 | −0.3114 | 0.7555 | −0.0011 | 0 | 1 | −0.0011 | −0.4671 | 0.6404 | −0.0035 | 0 | 1 | 0.0029 | |
Tamanrasset | 9 | 1.5639 | 0.1179 | 0.0134 | 1.3553 | 0.1753 | 0.0135 | 0.7298 | 0.4655 | 0.0013 | 0.5213 | 0.6022 | 0.0023 | |
Middle East | Sede Boker | 15 | 0.7918 | 0.4285 | 0.0023 | 0.3959 | 0.6922 | 0.0026 | 0 | 1 | 0 | 0.4949 | 0.6207 | 0.0013 |
Mezaira | 11 | 1.0899 | 0.2758 | 0.0081 | 0.9342 | 0.3502 | 0.0084 | −0.3114 | 0.7555 | −0.00031 | 0 | 1 | 0 | |
India | Ballia | 10 | 0.8944 | 0.3711 | 0.013 | −0.3578 | 0.7205 | −0.0024 | 0 | 1 | 0.00048 | 1.0733 | 0.2831 | 0.0188 |
Kanpur | 17 | 2.7599 * | 0.0058 | 0.0094 | −1.0298 | 0.3031 | −0.0026 | 0 | 1 | 0 | 2.0184 * | 0.0436 | 0.0103 | |
Southeast Asia | Chiang Mai | 9 | 0.7298 | 0.4655 | 0.0074 | −0.1789 | 0.858 | −0.0001 | 0.3578 | 0.7205 | 0.00052 | 0.1789 | 0.858 | 0.0026 |
Bangkok | 9 | 1.9809 * | 0.0476 | 0.0099 | −0.5367 | 0.5915 | −0.0002 | 0 | 1 | −0.00001 | 1.0733 | 0.2831 | 0.0065 | |
Northeast Asia | Beijing | 16 | −2.1161 * | 0.0343 | −0.0148 | 0.4953 | 0.6204 | 0.0015 | −0.4953 | 0.6204 | −0.00047 | −2.1161 * | 0.0343 | −0.0144 |
Seoul | 18 | −0.6818 | 0.4954 | −0.0042 | −1.3636 | 0.1727 | −0.0012 | −2.9545 * | 0.0031 | −0.00117 | −0.606 | 0.5445 | −0.0029 | |
Osaka | 9 | −3.0235 * | 0.0025 | −0.0209 | −2.3062 * | 0.0211 | −0.0019 | −2.3062 * | 0.0211 | −0.00193 | −3.2320 * | 0.0012 | −0.0206 | |
Taipei | 13 | −1.4032 | 0.1606 | −0.0091 | −0.79312 | 0.4277 | −0.0004 | −1.2812 | 0.2001 | −0.00114 | −1.1592 | 0.2464 | −0.0076 |
Region | Site | n | FMF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Z | p | S | Z | p | S | Z | p | S | |||
Europe | Thessaloniki | 14 | −2.1898 * | 0.0285 | −0.0108 | −1.4234 | 0.1546 | −0.0168 | 1.0949 | 0.2736 | 0.0075 |
Venice | 18 | −2.1969 * | 0.028 | −0.0031 | −0.9848 | 0.3247 | −0.0058 | −0.303 | 0.7619 | −0.002 | |
Erdemli | 10 | −0.3578 | 0.7205 | −0.0019 | −0.3578 | 0.7205 | −0.0087 | −0.5367 | 0.5915 | −0.0083 | |
North Africa | Cape Verde | 16 | −1.8459 ** | 0.0649 | −0.0028 | −0.1351 | 0.8926 | −0.0008 | 2.5733 * | 0.0101 | 0.0141 |
Cinzana | 15 | −0.5939 | 0.5526 | −0.0013 | −1.1877 | 0.235 | −0.0031 | 1.4846 | 0.1376 | 0.0073 | |
Ilorin | 11 | 0.1557 | 0.8763 | 0.0027 | 0.1557 | 0.8763 | 0.0053 | 1.8684 ** | 0.0617 | 0.0115 | |
Tamanrasset | 9 | −0.7298 | 0.4655 | −0.0033 | −0.9383 | 0.3481 | −0.005 | 0 | 1 | −0.0006 | |
Middle East | Sede Boker | 15 | −0.099 | 0.9212 | −0.002 | 0.099 | 0.9212 | 0.0006 | 1.2867 | 0.6207 | 0.0075 |
Mezaira | 11 | −0.4671 | 0.6404 | −0.0097 | −0.7785 | 0.4363 | −0.0121 | −1.557 | 0.1195 | −0.0203 | |
India | Ballia | 10 | 0.1789 | 0.858 | 0.005 | 0.1789 | 0.858 | 0.0068 | −0.5367 | 0.5915 | −0.0026 |
Kanpur | 17 | 1.3594 | 0.174 | 0.0048 | 0.6179 | 0.5366 | 0.0048 | −0.206 | 0.8368 | −0.0008 | |
Southeast Asia | Chiang Mai | 10 | 0.0000 | 1.0000 | 0.0006 | 0.6179 | 0.5366 | 0.0128 | 1.9677 * | 0.0491 | 0.0157 |
Bangkok | 10 | 0.3578 | 0.7205 | 0.0005 | 1.61 | 0.1074 | 0.012 | 2.3255 * | 0.02 | 0.0199 | |
Northeast Asia | Beijing | 16 | −0.5939 | 0.5526 | −0.0026 | 0.7654 | 0.444 | 0.0019 | 2.9265 * | 0.0034 | 0.0119 |
Seoul | 18 | 1.6666 ** | 0.0956 | 0.0021 | 2.2727 * | 0.0231 | 0.0095 | 0.9848 | 0.3247 | 0.0022 | |
Osaka | 9 | −0.7298 | 0.4655 | −0.0011 | 0.1043 | 0.917 | 0.0006 | 1.1468 | 0.2515 | 0.0109 | |
Taipei | 13 | 0.7931 | 0.4277 | 0.0016 | 3.5995 * | 0.0003 | 0.0113 | 1.4032 | 0.1606 | 0.0089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Sim, J.; Dehkhoda, N.; Joo, S.; Kim, T.; Kim, G.; Müller, D.; Tesche, M.; Shin, S.-K.; Shin, D.; et al. Long-Term Variation Study of Fine-Mode Particle Size and Regional Characteristics Using AERONET Data. Remote Sens. 2022, 14, 4429. https://doi.org/10.3390/rs14184429
Shin J, Sim J, Dehkhoda N, Joo S, Kim T, Kim G, Müller D, Tesche M, Shin S-K, Shin D, et al. Long-Term Variation Study of Fine-Mode Particle Size and Regional Characteristics Using AERONET Data. Remote Sensing. 2022; 14(18):4429. https://doi.org/10.3390/rs14184429
Chicago/Turabian StyleShin, Juseon, Juhyeon Sim, Naghmeh Dehkhoda, Sohee Joo, Taegyeong Kim, Gahyeong Kim, Detlef Müller, Matthias Tesche, Sung-Kyun Shin, Dongho Shin, and et al. 2022. "Long-Term Variation Study of Fine-Mode Particle Size and Regional Characteristics Using AERONET Data" Remote Sensing 14, no. 18: 4429. https://doi.org/10.3390/rs14184429
APA StyleShin, J., Sim, J., Dehkhoda, N., Joo, S., Kim, T., Kim, G., Müller, D., Tesche, M., Shin, S. -K., Shin, D., & Noh, Y. (2022). Long-Term Variation Study of Fine-Mode Particle Size and Regional Characteristics Using AERONET Data. Remote Sensing, 14(18), 4429. https://doi.org/10.3390/rs14184429