Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry
Abstract
:1. Introduction
2. Data and Methods
2.1. GRACE and GRACE-FO Data
2.2. SMB Model and Ice-Discharge Data
2.3. Climate Data
3. Results
3.1. Monthly Non-Cumulative Mass Variations of the GrIS
3.2. Seasonal Mass Variations of the GrIS
3.3. Annual Mass Variations of the GrIS
3.4. The Factors Dominating Mass Variations of the GrIS
4. Connection between Summer Mass Change of the GrIS and Summer NAO Index
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronyms | The full name |
GrIS | Greenland ice sheet |
GRACE | Gravity Recovery and Climate Experiment |
GRCAE-FO | Gravity Recovery and Climate Experiment Follow-On |
SMB | Surface mass balance |
D | Ice discharge |
MBM | Mass budget method |
RACMO | Regional Atmospheric Climate Model |
CSR | Center for Space Research |
JPL | Jet Propulsion Laboratory |
GFZ | German Research Center for Geoscience |
TN-13 | Technical Note 13 |
TN-14 | Technical Note 14 |
GIA | Glacial isostatic adjustment |
Precipitation | |
Meltwater runoff | |
Sublimation | |
Erosion/deposition | |
NAO | North Atlantic Oscillation |
sNAO | Summer North Atlantic Oscillation |
NOAA | National Oceanic and Atmospheric Administration |
SW | South west |
W | West |
NW | North west |
N | North |
NE | North east |
E | East |
SE | South east |
References
- Bamber, J.L.; Layberry, R.L.; Gogineni, S.P. A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. J. Geophys. Res. 2001, 106, 33773–33780. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L. Satellite-Observed Changes in the Arctic. Phys. Today 2004, 57, 38–44. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. (Eds.) IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 5, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Cazenave, A.; Dahle, C.; Llovel, W.; Panet, I.; Pfeffer, J.; Moreira, L. Applications and challenges of GRACE and GRACE Follow-On satellite gravimetry. Surv. Geophys. 2022, 43, 305–345. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J. Greenland mass balance from GRACE. Geophys. Res. Lett. 2005, 32, L18505. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 2006, 313, 1958–1960. [Google Scholar] [CrossRef]
- Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 2009, 36, L19503. [Google Scholar] [CrossRef]
- Velicogna, I.; Sutterley, T.C.; van den Broeke, M.R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 2014, 41, 8130–8137. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Zou, F. Re-estimation of glacier mass loss in Greenland from GRACE with correction of land-ocean leakage effects. Glob. Planet. Chang. 2015, 135, 170–178. [Google Scholar] [CrossRef]
- Groh, A.; Horwath, M.; Horvath, A.; Meister, R.; Sorensen, L.S.; Barletta, V.R.; Forsberg, R.; Wouters, B.; Ditmar, P.; Ran, J.; et al. Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results. Geosciences 2019, 9, 415. [Google Scholar] [CrossRef]
- Wouters, B.; Chambers, D.; Schrama, E.J.O. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett. 2008, 35, L20501. [Google Scholar] [CrossRef]
- Sasgen, I.; van den Broeke, M.; Bamber, J.L.; Rignot, E.; Sorensen, L.S.; Wouters, B.; Martinec, Z.; Velicogna, I.; Simonsen, S.B. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett. 2012, 333–334, 293–303. [Google Scholar] [CrossRef]
- Ran, J.; Vizcaino, M.; Ditmar, P.; van den Broeke, M.R.; Moon, T.; Steger, C.R.; Enderlin, E.M.; Wouters, B.; Noël, B.; Reijmer, C.H.; et al. Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet. Cryosphere 2018, 12, 2981–2999. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, E.; Liu, L.; Khan, S.A.; van Dam, T.; Yao, Y.; Bevis, M.; Helm, V. Geodetic measurements reveal short-term changes of glacial mass near Jakobshavn Isbræ (Greenland) from 2007 to 2017. Earth Planet. Sci. Lett. 2018, 503, 218–226. [Google Scholar] [CrossRef]
- Ramillien, R.; Lombard, A.; Cazenave, A.; Ivins, E.R.; Llubes, M.; Remy, F.; Biancale, R. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob. Planet. Chang. 2006, 53, 198–208. [Google Scholar]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res. 2011, 116, B7. [Google Scholar] [CrossRef]
- Su, X.; Shum, C.K.; Guo, J.; Duan, J.; Howat, I.; Yi, Y. High resolution Greenland ice sheet inter-annual mass variations combining GRACE gravimetry and Envisat altimetry. Earth Planet. Sci. Lett. 2015, 422, 11–17. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; Van As, D.; Machguth, H.; Gallée, H. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 2017, 11, 1015–1033. [Google Scholar] [CrossRef] [Green Version]
- Noël, B.; Van De Berg, W.J.; Van Wessem, J.M.; Van Meijgaard, E.; Van As, D.; Lenaerts, J.T.M.; Lhermitte, S.; Kuipers Munneke, P.; Smeets, C.J.P.P.; Van Ulft, L.H.; et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 1: Greenland (1958–2016). Cryosphere 2018, 12, 811–831. [Google Scholar] [CrossRef]
- King, M.D.; Howat, I.M.; Jeong, S.; Noh, M.J.; Wouters, B.; Noël, B.; Van Den Broeke, M.R. Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. Cryosphere 2018, 12, 3813–3825. [Google Scholar] [CrossRef] [PubMed]
- Mouginot, J.; Rignot, E.; Bjørk, A.A.; Van Den Broeke, M.; Millan, R.; Morlighem, M.; Noël, B.; Scheuchl, B.; Wood, M. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 2019, 116, 9239–9244. [Google Scholar] [CrossRef] [PubMed]
- Sasgen, I.; Wouters, B.; Gardner, A.S.; King, M.D.; Tedesco, M.; Landerer, F.W.; Dahle, C.; Save, H.; Fettweis, X. Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ. 2020, 1, 8. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; Geruo, A.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Osborn, T.J. Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather 2011, 66, 19–21. [Google Scholar] [CrossRef]
- Bettadpur, S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0006; Technical Report, GRACE 327–742 (Rev 5.0); Center for Space Research, The University of Texas: Austin, TA, USA, 2018. [Google Scholar]
- Yuan, D.-N. JPL Level-2 Processing Standards Document for Level-2 Product Release 06; GRACE 327–744; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2018. [Google Scholar]
- Dahle, C.; Flechtner, F.; Murböck, M.; Michalak, G.; Neumayer, H.; Abrykosov, O.; Reinhold, A.; König, R. GRACE Geopotential GSM Coefficients GFZ RL06; V. 6.0. GFZ Data Services; GeoForschungsZentrum Potsdam: Potsdam, Germany, 2018; Available online: https://podaac.jpl.nasa.gov/announcements/2018-07-16_UTCSR/JPL_GRACE_Level-2_RL06_datasets_release (accessed on 3 August 2018).
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res. Solid Earth 2021, 126, 1–22. [Google Scholar] [CrossRef]
- Richter, H.M.P.; Lück, C.; Klos, A.; Sideris, M.G.; Rangelova, E.; Kusche, J. Reconstructing GRACE-type time-variable gravity from the Swarm satellites. Sci. Rep. 2021, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Loomis, B.D.; Rachlin, K.E.; Luthcke, S.B. Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys. Res. Lett. 2019, 46, 6910–6917. [Google Scholar] [CrossRef]
- Loomis, B.D.; Rachlin, K.E.; Wiese, D.; Landerer, F.; Luthcke, S.B. Replacing GRACE/GRACE-FO C30 with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change. Geophys. Res. Lett. 2020, 47, e2019GL085488. [Google Scholar] [CrossRef]
- Su, X.; Guo, J.; Shum, C.K.; Luo, Z.; Zhang, Y. Increased low degree spherical harmonic influences on polar ice sheet mass change derived from GRACE Mission. Remote Sens. 2020, 12, 4178. [Google Scholar] [CrossRef]
- Sun, Y.; Riva, R.; Ditmar, P. Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res. Solid Earth 2016, 121, 8352–8370. [Google Scholar] [CrossRef]
- van der Wal, W.; Kurtenbach, E.; Kusche, J.; Vermeersen, B. Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment. Geophys. J. Int. 2011, 187, 797–812. [Google Scholar] [CrossRef]
- Jekeli, C. Alternative Methods to Smooth the Earth’s Gravity Field; Report No. 327; Geodetic and GeoInformation Science Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University: Columbus, OH, USA, 1981. [Google Scholar]
- Guo, J.Y.; Duan, X.J.; Shum, C.K. Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data. Geophys. J. Int. 2010, 181, 290–302. [Google Scholar] [CrossRef]
- van den Broeke, M.R.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; van den Berg, W.J.; van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning recent Greenland mass loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef]
- Mankoff, K.D.; Solgaard, A.; Colgan, W.; Ahlstrøm, A.P.; Khan, S.A.; Fausto, R.S. Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data 2020, 12, 1367–1383. [Google Scholar] [CrossRef]
- Bevis, M.; Harig, C.; Khan, S.A.; Brown, A.; Simons, F.J.; Willis, M.; Fettweis, X.; van den Broeke, M.R.; Madsen, F.B.; Kendrick, E.; et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl. Acad. Sci. USA 2019, 116, 1934–1939. [Google Scholar] [CrossRef]
- Van Angelen, J.H.; Van Den Broeke, M.R.; Wouters, B.; Lenaerts, J.T.M. Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surv. Geophys. 2014, 35, 1155–1174. [Google Scholar] [CrossRef]
- Zou, F.; Tenzer, R.; Fok, H.S.; Nichol, J.E. Recent climate change feedbacks to greenland ice sheet mass changes from grace. Remote Sens. 2020, 12, 3250. [Google Scholar] [CrossRef]
Year | Seasonal Mass Accumulation [Gt] | Seasonal Mass Loss [Gt] | ||||||
---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
2003 | 123.63 | 0 | 42.50 | 39.05 | 0 | −340.13 | −34.28 | −11.92 |
2004 | 81.30 | 0 | 43.83 | 71.82 | −16.64 | −223.72 | −48.00 | −7.81 |
2005 | 65.69 | 0 | 19.16 | 84.43 | −2.79 | −316.92 | −83.89 | 0 |
2006 | 28.46 | 26.47 | 47.87 | 33.46 | −14.87 | −225.14 | −64.10 | −6.41 |
2007 | 55.92 | 0 | 25.15 | 105.4 | −9.45 | −349.18 | −69.31 | −0.87 |
2008 | 49.56 | 0 | 65.35 | 139.69 | −41.47 | −319.56 | −43.15 | −45.35 |
2009 | 25.38 | 6.02 | 26.93 | 109.25 | −19.49 | −292.59 | −75.87 | −24.33 |
2010 | 66.67 | 0 | 74.15 | 52.37 | −27.77 | −450.42 | −93.07 | 0 |
2011 | 21.45 | 0 | 10.05 | 60.07 | −2.02 | −392.52 | −70.32 | −31.22 |
2012 | 88.21 | 0 | 62.50 | 75.33 | −22.52 | −490.59 | −124.47 | 0 |
2013 | 57.67 | 38.42 | 0 | 71.06 | −10.16 | −140.07 | −51.38 | −16.11 |
2014 | 80.89 | 0 | 76.66 | 78.47 | 0 | −363.42 | −13.43 | 0 |
2015 | 8.76 | 0 | 45.56 | 111.66 | −21.79 | −310.17 | −32.10 | −70.45 |
2016 | 111.98 | 0 | 167.54 | 128.97 | 0 | −437.95 | −4.45 | −62.85 |
2019 | 17.27 | 13.00 | 91.26 | 156.75 | −57.15 | −485.75 | −82.94 | 0 |
2020 | 73.90 | 0 | 180.96 | 166.27 | −160.49 | −397.65 | 0 | −98.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, P.; Su, X.; Luo, Z. Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry. Remote Sens. 2022, 14, 4442. https://doi.org/10.3390/rs14184442
Shang P, Su X, Luo Z. Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry. Remote Sensing. 2022; 14(18):4442. https://doi.org/10.3390/rs14184442
Chicago/Turabian StyleShang, Peisi, Xiaoli Su, and Zhicai Luo. 2022. "Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry" Remote Sensing 14, no. 18: 4442. https://doi.org/10.3390/rs14184442
APA StyleShang, P., Su, X., & Luo, Z. (2022). Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry. Remote Sensing, 14(18), 4442. https://doi.org/10.3390/rs14184442