Total Variation Weighted Low-Rank Constraint for Infrared Dim Small Target Detection
Abstract
:1. Introduction
2. Related Works
2.1. Sequence Image-Detection Methods
2.2. Single-Frame Image-Detection Methods
3. Proposed Method
3.1. TV Model
3.2. Overlapping Edge Information
3.3. TVWLR Model
3.4. Optimization Algorithm
3.5. Evaluation Metrics
4. Experiments and Results
4.1. Parameter Setting
4.2. Experimental Preparation
4.3. Qualitative Results
4.4. Quantitative Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dawson, J.A.; Bankston, C.T. Space debris characterization using thermal imaging systems. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, HI, USA, 14–17 September 2010; Volume E40. [Google Scholar]
- Kim, S. Analysis of small infrared target features and learning-based false detection removal for infrared search and track. Pattern Anal. Appl. 2014, 17, 883–900. [Google Scholar] [CrossRef]
- Sadjadi, F.A.; Chun, C.S.L. Automatic detection of small objects from their infrared state-of-polarization vectors. Opt. Lett. 2003, 28, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, J. Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track. Sensors 2014, 14, 13210–13242. [Google Scholar] [CrossRef]
- Tartakovsky, A.; Kligys, S.; Petrov, A. Adaptive sequential algorithms for detecting targets in a heavy IR clutter. SPIE Proc, Signal Data Process. Small Targets (SDPST) 1999, 3809, 231–242. [Google Scholar]
- Tonissen, S.M.; Evans, R.J. Performance of dynamic programming techniques for track-before-detect. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1440–1451. [Google Scholar] [CrossRef]
- Luo, J.H.; Ji, H.B.; Liu, J. An algorithm based on spatial filter for infrared small target detection and its application to an all directional IRST system. In Proceedings of the 27th International Congress on High-Speed Photography and Photonics, Xi’an, China, 17–22 September 2006; Volume 6279. [Google Scholar]
- Reed, I.S.; Gagliardi, R.M.; Stotts, L.B. Optical moving target detection with 3-D matched filtering. IEEE Trans. Aerosp. Electron. Syst. 2002, 24, 327–336. [Google Scholar] [CrossRef]
- Guo, J.; Wu, Y.; Dai, Y. Small target detection based on reweighted infrared patch-image model. IET Image Process. 2018, 12, 70–79. [Google Scholar] [CrossRef]
- Tom, V.T.; Peli, T.; Leung, M.; Bondaryk, J.E. Morphology-based algorithm for point target detection in infrared backgrounds. Signal Data Process. Small Targets 1993, 1954, 2–11. [Google Scholar]
- Deshpande, S.D.; Meng, H.E.; Ronda, V.; Chan, P. Max-Mean and Max-Median Filters for Detection of Small-Targets. In Proceedings of the SPIE’s International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, USA, 18 July 1999; Volume 3809. [Google Scholar]
- Xia, C.; Li, X.; Zhao, L.; Yu, S. Modified Graph Laplacian Model With Local Contrast and Consistency Constraint for Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5807–5822. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A Local Contrast Method for Small Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Han, J.; Yong, M.; Bo, Z.; Fan, F.; Liang, K.; Yu, F. A Robust Infrared Small Target Detection Algorithm Based on Human Visual System. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar]
- Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Han, J.; Liu, C.; Liu, Y.; Luo, Z.; Zhang, X.; Niu, Q. Infrared Small Target Detection Utilizing the Enhanced Closest-Mean Background Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 645–662. [Google Scholar] [CrossRef]
- Bai, X.; Bi, Y. Derivative Entropy-Based Contrast Measure for Infrared Small-Target Detection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2452–2466. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared Patch-Image Model for Small Target Detection in a Single Image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.H.; Tai, Y.W.; Bazin, J.C.; Kim, H.; Kweon, I.S. Partial sum minimization of Singular Values in Robust PCA: Algorithm and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 744–758. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Song, Y.; Guo, J. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values. Infrared Phys. Technol. 2017, 81, 182–194. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Z.; Kong, D.; Zhang, P.; He, Y. Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Tz, A.; Zp, A.; Hao, W.A.; Yh, A.; Cl, B.; Cy, A. Infrared small target detection via self-regularized weighted sparse model - ScienceDirect. Neurocomputing 2021, 420, 124–148. [Google Scholar]
- Wang, X.; Peng, Z.; Kong, D.; He, Y. Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5481–5493. [Google Scholar] [CrossRef]
- Shi, M.; Wang, H. Infrared dim and small target detection based on denoising autoencoder network. Mob. Netw. Appl. 2020, 25, 1469–1483. [Google Scholar] [CrossRef]
- Du, J.; Lu, H.; Hu, M.; Zhang, L.; Shen, X. CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor. IET Image Process. 2021, 15, 1–15. [Google Scholar] [CrossRef]
- Gao, Z.; Dai, J.; Xie, C. Dim and small target detection based on feature mapping neural networks. J. Vis. Commun. Image Represent. 2019, 62, 206–216. [Google Scholar] [CrossRef]
- Xue, D.; Sun, J.; Hu, Y.; Zheng, Y.; Zhu, Y.; Zhang, Y. Dim small target detection based on convolutinal neural network in star image. Multimed. Tools Appl. 2020, 79, 4681–4698. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, Z.; Xie, C. Dim and small target detection based on their living environment. Digit. Signal Process. 2022, 120, 103271. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Stefan, W.; Renaut, R.A.; Gelb, A. Improved Total Variation-Type Regularization Using Higher Order Edge Detectors. SIAM J. Imaging Sci. 2010, 3, 232–251. [Google Scholar] [CrossRef]
- Chan, T.; Marquina, A.; Mulet, P. High-order total variation-based image restoration. SIAM J. Sci. Comput. 2001, 22, 503–516. [Google Scholar] [CrossRef]
- Bredies, K.; Kunisch, K.; Pock, T. Total Generalized Variation. SIAM J. Imaging Sci. 2010, 3, 492–526. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Peng, Z.; Wu, J. Infrared Image Super-Resolution Reconstruction Based on Quaternion and High-Order Overlapping Group Sparse Total Variation. Sensors 2019, 19, 5139. [Google Scholar] [CrossRef] [PubMed]
- Li, C. An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing. Ph.D. Thesis, Rice University, Houston, TX, USA, 2011. [Google Scholar]
- Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Hale, E.T.; Yin, W.; Zhang, Y. Fixed-point continuation for l1-minimization: Methodology and convergence. SIAM J. Optim. 2008, 19, 1107–1130. [Google Scholar] [CrossRef]
- Gao, C.; Wang, L.; Xiao, Y.; Zhao, Q.; Meng, D. Infrared small-dim target detection based on Markov random field guided noise modeling. Pattern Recognit. 2018, 76, 463–475. [Google Scholar] [CrossRef]
Sequence | Size | Number | Target Description | Background Description |
---|---|---|---|---|
1 | 320 × 240 | 50 | Irregular shape Low contrast | Cloudy background Background changes quickly |
2 | 319 × 192 | 67 | Move quickly | Heavy noise Bright background |
3 | 407 × 272 | 185 | Small Vague and unclear | Complex background with trees |
4 | 298 × 186 | 40 | Tiny Very low contrast | Dim background Heavy noise |
5 | 320 × 240 | 200 | Small and bright Slow-motion | Sea background with bridge |
6 | 332 × 221 | 300 | The cloud obscures the target Size variation | Heavy cloud background Clouds change quickly |
Seq1 | Seq2 | Seq3 | Seq4 | Seq5 | Seq6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | SCRG | BSF | SCRG | BSF | SCRG | BSF | SCRG | BSF | SCRG | BSF | SCRG | BSF |
Tophat | 4.4421 | 4.6007 | 3.8941 | 3.8419 | 3.2609 | 3.3832 | 1.0877 | 1.1718 | 2.7220 | 2.7965 | 2.2323 | 2.2788 |
LCM | 1.4192 | 0.6568 | 1.6625 | 0.7981 | 1.6013 | 0.5912 | 0.8250 | 0.2148 | 1.6755 | 0.4726 | 1.2586 | 0.2192 |
MPCM | 7.2178 | 2.6165 | 7.3079 | 1.6609 | 2.6907 | 0.8652 | 0.9695 | 0.3156 | 1.9363 | 1.1390 | 1.4127 | 1.0858 |
IPI | 7.2045 | 0.8598 | – | – | 3.8504 | 1.5899 | 1.4695 | 0.5808 | 4.2557 | 3.4883 | 2.6592 | 2.3908 |
TV-PCP | 7.1253 | 8.0967 | 1.6206 | 1.5801 | 3.5875 | 4.3371 | 1.4335 | 1.8847 | 3.8874 | 4.8042 | 2.5588 | 2.8488 |
PSTNN | 7.0204 | 1.5193 | 7.2397 | 0.7621 | 3.4487 | 1.8467 | 1.3657 | 1.0496 | 4.0430 | 2.6367 | 2.6204 | 2.0141 |
SRWS | 19.5110 | 14.7651 | 5.6929 | 4.9813 | 4.2770 | 3.3859 | 5.6838 | 5.4759 | 4.7064 | 4.2971 | 5.0728 | 4.7346 |
Proposed | 20.9825 | 15.8786 | 5.3570 | 4.6874 | 6.8538 | 5.4259 | 9.4167 | 9.0722 | 6.8972 | 6.2975 | 8.8536 | 8.2634 |
Method | Seq1 | Seq2 | Seq3 | Seq4 | Seq5 | Seq6 |
---|---|---|---|---|---|---|
Tophat | 0.7207 | 0.7473 | 0.6483 | 0.8082 | 0.5718 | 0.4698 |
LCM | 0.7158 | 0.7432 | 0.6717 | 0.8661 | 0.6388 | 0.4761 |
MPCM | 0.8458 | 0.8048 | 0.7372 | 0.9278 | 0.6693 | 0.5418 |
IPI | 0.8174 | 0.7252 | 0.7442 | 0.9251 | 0.6579 | 0.5601 |
TV-PCP | 0.8567 | 0.8032 | 0.7312 | 0.9247 | 0.6601 | 0.5531 |
PSTNN | 0.9041 | 0.8784 | 0.8470 | 0.9677 | 0.7463 | 0.7604 |
SRWS | 0.9428 | 0.9209 | 0.8571 | 0.9898 | 0.8780 | 0.6521 |
Proposed | 0.9484 | 0.9168 | 0.9078 | 1.0000 | 0.8867 | 0.8850 |
Method | Seq1 | Seq2 | Seq3 | Seq4 | Seq5 | Seq6 |
---|---|---|---|---|---|---|
Tophat | 0.0012 | 0.0014 | 0.0011 | 0.0009 | 0.0010 | 0.0009 |
LCM | 0.0964 | 0.0402 | 0.0443 | 0.0399 | 0.0304 | 0.0295 |
MPCM | 0.2184 | 0.4967 | 0.4971 | 0.5490 | 0.5148 | 0.9059 |
IPI | 39.6778 | 9.3576 | 55.9365 | 11.9990 | 30.4720 | 30.1724 |
TV-PCP | 59.1727 | 15.4766 | 123.7174 | 64.4702 | 90.5041 | 88.1987 |
PSTNN | 0.0974 | 0.0430 | 0.0539 | 0.0298 | 0.1032 | 0.0504 |
SRWS | 0.9783 | 0.8261 | 2.4877 | 0.6208 | 1.3301 | 1.1024 |
Proposed | 7.8637 | 7.3609 | 15.4934 | 6.2538 | 11.6141 | 8.6011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xu, W.; Tao, S.; Gao, T.; Feng, Q.; Piao, Y. Total Variation Weighted Low-Rank Constraint for Infrared Dim Small Target Detection. Remote Sens. 2022, 14, 4615. https://doi.org/10.3390/rs14184615
Chen X, Xu W, Tao S, Gao T, Feng Q, Piao Y. Total Variation Weighted Low-Rank Constraint for Infrared Dim Small Target Detection. Remote Sensing. 2022; 14(18):4615. https://doi.org/10.3390/rs14184615
Chicago/Turabian StyleChen, Xiaolong, Wei Xu, Shuping Tao, Tan Gao, Qinping Feng, and Yongjie Piao. 2022. "Total Variation Weighted Low-Rank Constraint for Infrared Dim Small Target Detection" Remote Sensing 14, no. 18: 4615. https://doi.org/10.3390/rs14184615
APA StyleChen, X., Xu, W., Tao, S., Gao, T., Feng, Q., & Piao, Y. (2022). Total Variation Weighted Low-Rank Constraint for Infrared Dim Small Target Detection. Remote Sensing, 14(18), 4615. https://doi.org/10.3390/rs14184615