A Review of Marine Gravity Field Recovery from Satellite Altimetry
Abstract
:1. Introduction
2. Altimetry Missions of Different Modes
2.1. LRM Altimetry Missions
2.2. SAR Mode Altimetry Missions
2.3. Laser Altimetry Missions
2.4. Advanced Modes Altimetry Missions
3. Altimeter Data Processing
3.1. Range Corrections
3.2. GM and ERM Data Processing
3.3. Multi-Satellite Altimeter Data Fusion
4. Marine Gravity Field Recovery Methods
4.1. Inverse Stokes Formula
4.2. Inverse Vening Meinesz Formula
4.3. Laplace’s Equation
4.4. Least Square Collocation
5. Global Marine Gravity Anomaly Model
5.1. Global Gravity Anomaly Model
5.2. Model Performance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Altimetry Mission | Running Time | Orbit Inclination (°) | Ground Track Spacing in Equator (km) | Altimeter band | Diameter of Pulse Footprint under General Marine Conditions (SWH: 2m) (km) | Altimetry Accuracy (cm) |
---|---|---|---|---|---|---|
Skylab | 1973.05~1974.02 | 50 | — | Ku | 8.0 | 100~200 |
Geos-3 | 1975.04~1978.12 | 115 | — | Ku | 3.6 | 25~50 |
Seasat | 1978.06~1978.10 | 105 | — | Ku | 1.7 | 20~30 |
Geosat | 1985.03~1990.01 | 108 | ERM: 165, GM: 6 | Ku | 1.7 | 10~20 |
Geo-IK | 1984.08~1999.12 | 82–73.6 | — | X | — | — |
ERS-1 | 1991.12~2000.03 | 98.5 | ERM: 80, GM: 8 | Ku | 1.7 | ~10 |
T/P | 1992.09~2006.01 | 66 | ERM: 316 | Ku, C | 2.2 | 2~3 |
ERS-2 | 1995.04~2007.09 | 98.5 | ERM: 80 | Ku | 1.7 | ~10 |
GFO | 2000.01~2008.09 | 108 | ERM: 165 | Ku | 1.7 | ~3.5 |
Jason-1 | 2002.01~2013.06 | 66 | ERM: 316, GM: 7 | Ku, C | 2.2 | 2~3 |
Envisat | 2002.03~2012.06 | 98.55 | ERM: 80/93 | Ku, S | 1.7 | ~4.5 |
ICESat-1 | 2003.01~2010.02 | 94 | 30 | — | 0.07 | ~15 |
Jason-2 | 2008.07~2019.10 | 66 | ERM: 316, GM: 7 | Ku, C | 1.7 | 2.5~3.4 |
Cryosat-2 | 2010.04~ | 92 | GM: 7.5 | Ku | 1.6 | 1~3 |
HY-2A | 2011.08~2020.09 | 99.3 | ERM: 208, GM: 15 | Ku, C | 2.0 | ~4 |
SARAL | 2013.02~ | 98.5 | ERM: 80, GM: 5 | Ka | 1.4 | 1~2 |
Jason-3 | 2016.01~ | 66 | ERM: 316, GM: 7 | Ku, C | 2.2 | 2~3 |
Sentinel-3A | 2016.02~ | 98.6 | ERM: 104 | Ku, C | 0.3 | ~3.5 |
Geo-IK-2 | 2016.6~(No.12L) 2019.8~(No.13L) | 99.4 | — | Ka | — | ~1.5 |
Sentinel-3B | 2018.04~ | 98.6 | ERM: 104 | Ku, C | 0.3 | ~3.5 |
ICESat-2 | 2018.09~ | 92 | 30/3.3 | — | 0.017 | ~10 |
HY-2B | 2018.10~ | 99.3 | ERM: 208, GM: 17 | Ku, C | 2.0 | — |
HY-2C | 2020.09~ | 66 | ERM: 293, GM: 7 | Ku, C | 2.0 | — |
Jason-CS | 2020.11~ | 66 | ERM:316 | Ku, C | 0.1 | — |
HY-2D | 2021.05~ | 66 | ERM: 293, GM: 7 | Ku, C | 2.0 | — |
Appendix B
Version | Year | Reference Gravity Field | Grid Resolution | Coverage Range | Altimeter Data |
---|---|---|---|---|---|
V19.1 | 2012 | EGM2008 | 1′ × 1′ | 80.7°S~80.7°N | Ge + E1 + T/P + E2 + J1 + En + C2 |
V20.1 | 2012 | EGM2008 | 1′ × 1′ | 80.7°S~80.7°N | Ge + E1 + T/P + E2 + J1 + En + C2 |
V21.1 | 2013 | EGM2008 | 1′ × 1′ | 80.7°S~80.7°N | Ge + E1 + T/P + E2 + J1 + En + Cr2 |
V22.1 | 2013 | EGM2008 | 1′ × 1′ | 85°S~85°N | Ge + E1 + T/P + E2 + En + J1+ + C2 |
V23.1 | 2014 | EGM2008 | 1′ × 1′ | 85°S~85°N | Ge + E1 + T/P + J1 + E2 + En + C2 |
V24.1 | 2016 | EGM2008 | 1′ × 1′ | 85°S~85°N | Ge + E1 + T/P + J1 + E2 + En + C2 |
V25.1 | 2017 | EGM2008 | 1′ × 1′ | 85°S~85°N | Ge + E1 + T/P + J1 + E2 + En + C2 + Al |
V26.1 | 2018 | EGM2008 | 1′ × 1′ | 85°S~85°N | Ge + E1 + T/P + J1 + E2 + En + C2 + Al |
V27.1 | 2018 | EGM2008 | 1′ × 1′ | 85°S~85°N | Ge + E1 + T/P + J1 + E2 + En + C2 + Al + J2 |
V28.1 | 2019 | EGM2008 | 1′ × 1′ | 85°S~85°N | T/P + J1 + E2 + En + C2 + Al + J2 |
V29.1 | 2019 | EGM2008 | 1′ × 1′ | 85°S~85°N | T/P + J1 + E2 + En + J2 + C2 + Al + S3A + S3B |
V30.1 | 2020 | EGM2008 | 1′ × 1′ | 85°S~85°N | T/P + J1 + E2 + En + J2 + C2 + Al + S3A + S3B |
V31.1 | 2021 | EGM2008 | 1′ × 1′ | 85°S~85°N | T/P + J1 + E2 + En + J2 + C2 + Al + S3A + S3B |
Version | Year | Reference Gravity Field | Grid Resolution | Coverage Range | Altimeter Data |
---|---|---|---|---|---|
DTU10 | 2010 | EGM2008 | 1′ × 1′ | 88°S~88°N | Ge + E1 + T/P + GFO + E2 + J1+ ICESat-1 |
DTU13 | 2013 | EGM2008 | 1′ × 1′ | 88°S~88°N | Ge + E1 + T/P + GFO + E2 + J1 + C2 + ICESat-1 |
DTU14 | 2014 | EGM2008 | 1′ × 1′ | 88°S~88°N | Ge + E1 + T/P + GFO + E2 + J1 + C2 + ICESat-1 |
DTU15 | 2015 | EGM2008 | 1′ × 1′ | 88°S~88°N | Ge + E1 + T/P + GFO + E2 + J1 + C2 + ICESat-1 |
DTU17 | 2017 | EGM2008 | 1′ × 1′ | 88°S~88°N | T/P + GFO + E2 + J1 + C2 + J2 + Al + ICESat-1 |
References
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.; Chang, E.T.Y. Seafloor secrets revealed. Science 2014, 346, 32–33. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O.B.; Knudsen, P.; Kenyon, S.; Holmes, S. Global and Arctic marine gravity field from recent satellite altimetry (DTU13). In Proceedings of the 76th EAGE Conference and Exhibition, Amsterdam, The Netherlands, 1–5 June 2014. [Google Scholar] [CrossRef]
- Hwang, C.; Hsu, H.J.; Featherstone, W.E.; Cheng, C.C.; Yang, M.; Huang, W.; Wang, C.Y.; Huang, J.F.; Chen, K.H.; Huang, C.H.; et al. New gravimetric-only and hybrid geoid models of Taiwan for height modernisation, cross-island datum connection and airborne LiDAR mapping. J. Geod. 2020, 94, 83. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. Solid Earth 1997, 102, 10039–10054. [Google Scholar] [CrossRef]
- Schwabe, J.; Scheinert, M. Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data. J. Geod. 2014, 88, 821–838. [Google Scholar] [CrossRef]
- Sandwell, D.; Garcia, E.; Soofi, K.; Wessel, P.; Chandler, M.; Smith, W.H.F. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead. Edge 2013, 32, 892–899. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P. The DTU17 global marine gravity field: First validation results. In Fiducial Reference Measurements for Altimetry, International Association of Geodesy Symposia; Mertikas, S., Pail, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 150, pp. 83–87. [Google Scholar]
- Zhang, S.; Andersen, O.B.; Kong, X.; Li, H. Inversion and validation of improved marine gravity field recovery in South China Sea by incorporating HY-2A altimeter waveform data. Remote Sens. 2020, 12, 802. [Google Scholar] [CrossRef]
- Ling, Z.; Zhao, L.; Zhang, T.; Zhai, G.; Yang, F. Comparison of Marine Gravity Measurements from Shipborne and Satellite Altimetry in the Arctic Ocean. Remote Sens. 2021, 14, 41. [Google Scholar] [CrossRef]
- Yu, D.; Hwang, C.; Andersen, O.B.; Chang, E.T.Y. Gravity recovery from SWOT altimetry using geoid height and geoid gradient. Remote Sens. Environ. 2021, 265, 112650. [Google Scholar] [CrossRef]
- Li, Q.; Bao, L.; Shum, C.K. Altimeter-derived marine gravity variations reveal the magma mass motions within the subaqueous Nishinoshima volcano, Izu-Bonin Arc, Japan. J. Geod. 2021, 95, 46. [Google Scholar] [CrossRef]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The combined global gravity field model XGM2019e. J. Geod. 2020, 94, 66. [Google Scholar] [CrossRef]
- Green, C.M.; Fletcher, K.M.U.; Cheyney, S.; Dawson, G.J.; Campbell, S.J. Satellite gravity–enhancements from new satellites and new altimeter technology. Geophy. Prospect. 2019, 67, 1611–1619. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Abulaitijiang, A.; He, X.; Luo, Z.; Shi, H.; Wang, H.; Ding, Y. Local Enhancement of Marine Gravity Field over the Spratly Islands by Combining Satellite SAR Altimeter-Derived Gravity Data. Remote Sens. 2022, 14, 474. [Google Scholar] [CrossRef]
- Guo, J.; Luo, H.; Zhu, C.; Ji, H.; Li, G.; Liu, X. Accuracy comparison of marine gravity derived from HY-2A/GM and CryoSat-2 altimetry data: A case study in the Gulf of Mexico. Geophy. J. Int. 2022, 230, 1267–1279. [Google Scholar] [CrossRef]
- Zaki, A.; Mansi, A.H.; Selim, M.; Rabah, M.; El-Fiky, G. Comparison of satellite altimetric gravity and global geopotential models with shipborne gravity in the Red Sea. Mar. Geod. 2018, 41, 258–269. [Google Scholar] [CrossRef]
- International Altimetry Team. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Zhang, S.; Abulaitijiang, A.; Andersen, O.B.; Sandwell, D.T.; Beale, J. Comparison and evaluation of high-resolution marine gravity recovery via sea surface heights or sea surface slopes. J. Geod. 2021, 95, 66. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, J.; Hwang, C.; Gao, J.; Yuan, J.; Liu, X. How HY-2A/GM altimeter performs in marine gravity derivation: Assessment in the South China Sea. Geophy. J. Int. 2019, 219, 1056–1064. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Harper, H.; Tozer, B.; Smith, W.H.F. Gravity field recovery from geodetic altimeter missions. Adv. Space Res. 2021, 68, 1059–1072. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, J.; Yuan, J.; Li, Z.; Liu, X.; Gao, J. SDUST2021GRA: Global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data. Earth Syst. Sci. Data Discuss, 2022; in review. [Google Scholar] [CrossRef]
- Escudier, P.; Couhert, A.; Mercier, F.; Mallet, A.; Thibaut, P.; Tran, N.; Amarouche, L.; Picard, B.; Carrere, L.; Dibarboure, G.; et al. Satellite radar altimetry: Principle, accuracy, and precision. In Satellite Altimetry over Oceans and Land Surfaces; Stammer, D., Cazenave, A., Eds.; CRC Press, Taylor and Francis Group, Boca Raton, FL, USA: New York, NY, USA; London, UK, 2018; pp. 1–62. [Google Scholar]
- Schlembach, F.; Passaro, M.; Quartly, G.D.; Kurekin, A.; Nencioli, F.; Dodet, G.; Piollé, J.-F.; Ardhuin, F.; Bidlot, J.; Schwatke, C.; et al. Round Robin Assessment of Radar Altimeter Low Resolution Mode and Delay-Doppler Retracking Algorithms for Significant Wave Height. Remote Sens. 2020, 12, 1254. [Google Scholar] [CrossRef]
- Benveniste, J. Radar altimetry: Past, present and future. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 1–17. [Google Scholar]
- Andersen, O.B.; Knudsen, P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J. Geophys. Res. Ocean 1998, 103, 8129–8137. [Google Scholar] [CrossRef]
- Hwang, C. Inverse Vening Meinesz formula and deflection-geoid formula: Applications to the predictions of gravity and geoid over the South China Sea. J. Geod. 1998, 72, 304–312. [Google Scholar] [CrossRef]
- Brockley, D.J.; Baker, S.; Féménias, P.; Martínez, B.; Massmann, F.H.; Otten, M.; Paul, F.; Picard, B.; Prandi, P.; Roca, M.; et al. REAPER: Reprocessing 12 years of ERS-1 and ERS-2 altimeters and microwave radiometer data. IEEE Trans. Geosci. Remote 2017, 55, 5506–5514. [Google Scholar] [CrossRef]
- Beckley, B.D.; Zelensky, N.P.; Holmes, S.A.; Lemoine, F.G.; Ray, R.D.; Mitchum, G.T.; Desai, S.D.; Brown, S.T. Assessment of the Jason-2 extension to the TOPEX/Poseidon, Jason-1 sea-surface height time series for global mean sea level monitoring. Mar. Geod. 2010, 33 (Suppl. S1), 447–471. [Google Scholar] [CrossRef]
- Andersen, O.B.; Zhang, S.; Sandwell, D.T.; Dibarboure, G.; Smith, W.H.F.; Abulaitijiang, A. The unique role of the Jason geodetic missions for high resolution gravity field and mean sea surface modelling. Remote Sens. 2021, 13, 646. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Jin, T.; Che, D. HY-2A Altimeter Data Initial Assessment and Corresponding Two-Pass Waveform Retracker. Remote Sens. 2018, 10, 507. [Google Scholar] [CrossRef]
- Verron, J.; Bonnefond, P.; Andersen, O.; Ardhuin, F.; Bergé-Nguyen, M.; Bhowmick, S.; Blumstein, D.; Boy, F.; Brodeau, L.; Crétaux, J.F.; et al. The SARAL/AltiKa mission: A step forward to the future of altimetry. Adv. Space Res. 2021, 68, 808–828. [Google Scholar] [CrossRef]
- Zhang, S.; Sandwell, D.T. Retracking of SARAL/AltiKa radar altimetry waveforms for optimal gravity field recovery. Mar. Geod. 2017, 40, 40–56. [Google Scholar] [CrossRef]
- Testoedov, N.A.; Karutin, S.N. Space Geodesy, Communications, and Navigation: History of the Development, State, and Prospects. Her. Russ. Acad. Sci. 2021, 91, 647–655. [Google Scholar] [CrossRef]
- Egido, A.; Smith, W.H.F. Fully Focused SAR Altimetry: Theory and Applications. IEEE Trans. Geosci. Remote Sens. 2017, 55, 392–406. [Google Scholar] [CrossRef]
- Raney, R.K. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Boy, F.; Desjonquères, J.D.; Picot, N.; Moreau, T.; Raynal, M. CryoSat-2 SAR-mode over oceans: Processing methods, global assessment, and benefits. IEEE Trans. Geosci. Remote Sens. 2016, 55, 148–158. [Google Scholar] [CrossRef]
- Labroue, S.; Boy, F.; Picot, N.; Urvoy, M.; Ablain, M. First quality assessment of the Cryosat-2 altimetric system over ocean. Adv. Space Res. 2012, 50, 1030–1045. [Google Scholar] [CrossRef]
- Scharroo, R.; Bonekamp, H.; Ponsard, C.; Parisot, F.; Engeln, A.V.; Tahtadjiev, M.; Vriendt, K.D.; Montagner, F. Jason continuity of services: Continuing the Jason altimeter data records as Copernicus Sentinel-6. Ocean Sci. 2016, 12, 471–479. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Che, D.; Li, H.; Zhang, S.; Ma, B. Calculation of Deflection of Vertical and Gravity Anomalies Over the South China Sea Derived from ICESat-2 Data. Front. Earth Sci. 2021, 9, 379. [Google Scholar] [CrossRef]
- Fu, L.L.; Ubelmann, C. On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Ocean. Tech. 2014, 31, 560–568. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, M.; Zhang, H.; Li, J.; Jiang, W.; Zhang, S.; Hu, M. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data. J. Geod. 2022, 96, 30. [Google Scholar] [CrossRef]
- Uematsu, A.; Nakamura, R.; Nakajima, Y.; Yajima, Y. X-band interferometric SAR sensor for the Japanese altimetry mission, COMPIRA. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; IEEE: Melbourne, Australia; pp. 2943–2946. [Google Scholar] [CrossRef]
- Kong, W.; Chong, J.; Hong, T. Performance Analysis of Ocean Surface Topography Altimetry by Ku-Band Near-Nadir Interferometric SAR. Remote Sens. 2017, 9, 933. [Google Scholar] [CrossRef]
- Chen, G.; Tang, J.; Zhao, C.; Wu, S.; Yu, F.; Ma, C.; Xu, Y.; Chen, W.; Zhang, Y.; Liu, J.; et al. Concept design of the ‘Guanlan’ science mission: China’s novel contribution to space oceanography. Front. Mar. Sci. 2019, 6, 194. [Google Scholar] [CrossRef]
- Bao, L.; Xu, H.; Li, Z. Towards a 1 mGal accuracy and 1 min resolution altimetry gravity field. J. Geod. 2013, 87, 961–969. [Google Scholar] [CrossRef]
- Nogués, O.C.I.; Munoz-Martin, J.F.; Park, H.; Camps, A.; Onrubia, R.; Pascual, D.; Rüdiger, C.; Walker, J.P.; Monerris, A. Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR). Remote Sens. 2021, 13, 4186. [Google Scholar] [CrossRef]
- Cartwright, J.; Clarizia, M.P.; Cipollini, P.; Bank, C.J.; Srokosz, M. Independent DEM of Antarctica using GNSS-R data from TechDemoSat-1. Geophys. Res. Lett. 2018, 45, 6117–6123. [Google Scholar] [CrossRef]
- Li, W.; Rius, A.; Fabra, F.; Cardellach, E.; Ribó, S.; Martín-Neira, M. Revisiting the GNSS-R waveform statistics and its impact on altimetric retrievals. IEEE Trans. Geosci. Remote 2018, 56, 2854–2871. [Google Scholar] [CrossRef]
- Geremia-Nievinski, F.; Hobiger, T.; Haas, R.; Liu, W.; Williams, S. SNR-based GNSS reflectometry for coastal sea-level altimetry: Results from the first IAG inter-comparison campaign. J. Geod. 2020, 94, 70. [Google Scholar] [CrossRef]
- Yang, L.; Xu, Y.; Zhou, X.; Zhu, L.; Jiang, Q.; Sun, H.; Chen, G.; Wang, P.; Mertikas, S.P.; Fu, Y.; et al. Calibration of an airborne interferometric radar altimeter over the Qingdao coast sea, China. Remote Sens. 2020, 12, 1651. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X.; Mertikas, S.P.; Zhu, L.; Yang, L.; Lei, N. First calibration results of Jason-2 and SARAL/AltiKa satellite altimeters from the Qianli Yan permanent Cal/Val facilities, China. Adv. Space Res. 2017, 59, 2831–2842. [Google Scholar] [CrossRef]
- Quartly, G.D.; Chen, G.; Nencioli, F.; Morrow, R.; Picot, N. An overview of requirements, procedures and current advances in the calibration/validation of radar altimeters. Remote Sens. 2021, 13, 125. [Google Scholar] [CrossRef]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.L.; Picot, N.; Raynal, M.; Roinard, H. Satellite altimetry measurements of sea level in the coastal zone. Surv. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
- Cipollini, P.; Benveniste, J.; Birol, F.; Fernandes, M.J.; Obligis, E.; Passaro, M.; Strub, P.T.; Valladeau, G.; Vignudelli, S.; Wilkin, J. Satellite altimetry in coastal regions. In Satellite Altimetry over Oceans and Land Surfaces; Stammer, D., Cazenave, A., Eds.; CRC Press, Taylor and Francis Group, Boca Raton, FL, USA: New York, NY, USA; London, UK, 2018; pp. 343–380. ISBN 13:978-1-4987-4345-7. [Google Scholar]
- Jiang, M.; Xu, K.; Liu, Y.; Wang, L. Estimating the time tag bias of HY-2A radar altimeter and its application to dual-frequency ionosphere correction. Mar. Geod. 2017, 40, 361–377. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C.; Nunes, A.L.; Scharroo, R. Atmospheric corrections for altimetry studies over inland water. Remote Sens. 2014, 6, 4952–4997. [Google Scholar] [CrossRef]
- Imel, D.A. Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere correction. J. Geophys. Res. Ocean. 1994, 99, 24895–24906. [Google Scholar] [CrossRef]
- Bilitza, D.; McKinnell, L.A.; Reinisch, B.; Fuller-Rowell, T. The international reference ionosphere today and in the future. J. Geod. 2011, 85, 909–920. [Google Scholar] [CrossRef]
- Scharroo, R.; Smith, W.H. A global positioning system–based climatology for the total electron content in the ionosphere. J. Geophys. Res. Space 2010, 115, A10318. [Google Scholar] [CrossRef]
- Komjathy, A.; Sparks, L.; Wilson, B.D.; Mannucci, A.J. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci. 2005. [Google Scholar] [CrossRef]
- Liu, Q.; Hernández-Pajares, M.; Lyu, H.; Goss, A. Influence of temporal resolution on the performance of global ionospheric maps. J. Geod. 2021, 95, 34. [Google Scholar] [CrossRef]
- Wielgosz, P.; Milanowska, B.; Krypiak-Gregorczyk, A.; Jarmołowski, W. Validation of GNSS-derived global ionosphere maps for different solar activity levels: Case studies for years 2014 and 2018. GPS Solut. 2021, 25, 103. [Google Scholar] [CrossRef]
- Ray, R.D. Daily harmonics of ionospheric total electron content from satellite altimetry. J. Atmos. Sol. Terr. Phy. 2020, 209, 105423. [Google Scholar] [CrossRef]
- Dettmering, D.; Schwatke, C. Ionospheric corrections for satellite altimetry-impact on global mean sea level trends. Earth Space Sci. 2022, 9, e2021EA002098. [Google Scholar] [CrossRef]
- Obligis, E.; Desportes, C.; Eymard, L.; Fernandes, M.J.; Lázaro, C.; Nunes, A.L. Tropospheric corrections for coastal altimetry. Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 147–176. [Google Scholar]
- Brown, S. Maintaining the long-term calibration of the Jason-2/OSTM advanced microwave radiometer through intersatellite calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1531–1543. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C.; Vieira, T. On the role of the troposphere in satellite altimetry. Remote Sens. Environ. 2021, 252, 112149. [Google Scholar] [CrossRef]
- Brown, S. A novel near-land radiometer wet path-delay retrieval algorithm: Application to the Jason-2/OSTM advanced microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1986–1992. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C. GPD+ wet tropospheric corrections for CryoSat-2 and GFO altimetry missions. Remote Sens. 2016, 8, 851. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lázaro, C. Modelling the altitude dependence of the wet path delay for coastal altimetry using 3-D fields from ERA5. Remote Sens. 2019, 11, 2973. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lázaro, C. Independent assessment of on-board microwave radiometer measurements in coastal zones using tropospheric delays from GNSS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1804–1816. [Google Scholar] [CrossRef]
- Lázaro, C.; Fernandes, M.J.; Vieira, T.; Vieira, E. A coastally improved global dataset of wet tropospheric corrections for satellite altimetry. Earth Syst. Sci. Data. 2020, 12, 3205–3228. [Google Scholar] [CrossRef]
- Ray, R.D. Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Ocean. 2013, 118, 4570–4584. [Google Scholar] [CrossRef]
- Hart-Davis, M.G.; Piccioni, G.; Dettmering, D.; Schwatke, C.; Passaro, M.; Seitz, F. EOT20: A global ocean tide model from multi-mission satellite altimetry. Earth Syst. Sci. Data 2021, 13, 3869–3884. [Google Scholar] [CrossRef]
- Carrère, L.; Lyard, F.; Cancet, M.; Guillot, A.; Picot, N. FES 2014, a new tidal model—Validation results and perspectives for improvements. In Proceedings of the ESA Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Zawadzki, L.; Ablain, M.; Carrère, L.; Ray, R.D.; Zelensky, N.P.; Lyard, F.; Guillot, A.; Picot, N. Investigating the 59-day error signal in the mean sea level derived from TOPEX/Poseidon, jason-1, and jason-2 data with FES and GOT ocean tide models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3244–3255. [Google Scholar] [CrossRef]
- Piccioni, G.; Dettmering, D.; Passaro, M.; Schwatke, C.; Bosch, W.; Seitz, F. Coastal Improvements for Tide Models: The Impact of ALES Retracker. Remote Sens. 2018, 10, 700. [Google Scholar] [CrossRef]
- Wang, X.; Verlaan, M.; Apecechea, M.I.; Lin, H.X. Computation-efficient parameter estimation for a high-resolution global tide and surge model (gtsm). J. Geophys. Res. Ocean. 2021, 126, e2020JC016917. [Google Scholar] [CrossRef]
- Stammer, D.; Ray, R.D.; Andersen, O.B.; Arbic, B.K.; Bosch, W.; Carrère, L.; Cheng, Y.; Chinn, D.S.; Dushaw, B.D.; Egbert, G.D.; et al. Accuracy assessment of global barotropic ocean tide models. Rev. Geophy. 2014, 52, 243–282. [Google Scholar] [CrossRef]
- Lago, L.S.; Saraceno, M.; Ruiz-Etcheverry, L.A.; Passaro, M.; Oreiro, F.A.; DOnofrio, E.E.; Gonzalez, R.A. Improved sea surface height from satellite altimetry in coastal zones: A case study in southern Patagonia. IEEE J-STARS 2017, 10, 3493–3503. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, X.; Zhou, D.; Sun, Y. Advances and accuracy assessment of ocean tide models in the Antarctic Ocean. Front. Earth Sci. 2022, 10, 757821. [Google Scholar] [CrossRef]
- Carrère, L.; Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—Comparisons with observations. Geophys. Res. Lett. 2003, 30, 1275. [Google Scholar] [CrossRef]
- Carrère, L.; Faugère, Y.; Ablain, M. Major improvement of altimetry sea level estimations using pressure-derived cor-rections based on ERA-Interim atmospheric reanalysis. Ocean Sci. 2016, 12, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Cipollini, P.; Calafat, F.M.; Jevrejeva, S.; Melet, A.; Prandi, P. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. In Integrative Study of the Mean Sea Level and Its Components. Space Sciences Series of ISSI; Cazenave, A., Champollion, N., Paul, F., Benveniste, J., Eds.; Springer: Cham, Switzerland, 2017; Volume 58. [Google Scholar] [CrossRef]
- Born, G.H.; Richards, M.A.; Rosborough, G.W. An empirical determination of the effects of sea state bias on SEASAT altimetry. J. Geophys. Res. Ocean. 1982, 87, 3221–3226. [Google Scholar] [CrossRef]
- Gaspar, P.; Florens, J.P. Estimation of the sea state bias in radar altimeter measurements of sea level: Results from a new nonparametric method. J. Geophys. Res. Ocean. 1998, 103, 15803–15814. [Google Scholar] [CrossRef]
- Tran, N.; Labroue, S.; Philipps, S.; Bronner, E.; Picot, N. Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar. Geod. 2010, 33, 348–362. [Google Scholar] [CrossRef]
- Passaro, M.; Nadzir, Z.A.; Quartly, G.D. Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections. Remote Sens. Environ. 2018, 218, 245–254. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. Improving precision of high-rate altimeter sea level anomalies by removing the sea state bias and intra-1-Hz covariant error. Remote Sens. Environ. 2020, 251, 112081. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Gao, L.; Li, X.; Zou, B.; Liu, T. Sea state bias variability in satellite altimetry data. Remote Sens. 2019, 11, 1176. [Google Scholar] [CrossRef]
- Feng, H.; Yao, S.; Li, L.; Tran, N.; Vandemark, D.; Labroue, S. Spline-Based Nonparametric Estimation of the Altimeter Sea-State Bias Correction. IEEE Trans. Geosci. Remote Sens. 2010, 7, 577–5810. [Google Scholar] [CrossRef]
- Gaspar, P.; Labroue, S.; Ogor, F.; Lafitte, G.; Marchal, L.; Rafanel, M. Improving nonparametric estimates of the sea state biasin radar altimeter measurements of sea level. J. Atmos. Ocean. Tech. 2002, 19, 1690–1707. [Google Scholar] [CrossRef]
- Herrmann, E.; Wand, M.P.; Engel, J. A bandwidth selector for bivariate kernel regression. J. R. Stat. Soc. B 1995, 57, 171–180. [Google Scholar] [CrossRef]
- Tran, N.; Vandemark, D.; Chapron, B.; Labroue, S.; Feng, H.; Beckley, B.; Vincent, P. New models for satellite altimeter sea state bias correction developed using global wave model data. J. Geophys. Res. Ocean. 2006, 111, C09009. [Google Scholar] [CrossRef]
- Pires, N.; Fernandes, M.J.; Gommenginger, C.; Scharroo, R. A conceptually simple modeling approach for Jason-1 sea state bias correction based on 3 parameters exclusively derived from altimetric information. Remote Sens. 2016, 8, 576. [Google Scholar] [CrossRef]
- Pires, N.; Fernandes, M.J.; Gommenginger, C.; Scharroo, R. Improved sea state bias estimation for altimeter reference missions with altimeter-only three-parameter models. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1448–1462. [Google Scholar] [CrossRef]
- Gommenginger, C.; Thibaut, P.; Fenoglio-Marc, L.; Quartly, G.; Deng, X.; Gomez-Enri, J. Retracking altimeter waveforms near the coasts. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 61–101. [Google Scholar]
- Guo, J.Y.; Hwang, C.W.; Chang, X.T.; Liu, Y. Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Prog. Nat. Sci. 2006, 16, 732–738. [Google Scholar] [CrossRef]
- Passaro, M.; Cipollini, P.; Vignudelli, S.; Quartly, G.D.; Snaith, H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens. Environ. 2014, 145, 173–189. [Google Scholar] [CrossRef]
- Roscher, R.; Uebbing, B.; Kusche, J. STAR: Spatio-temporal altimeter waveform retracking using sparse representation and conditional random fields. Remote Sens. Environ. 2017, 201, 148–164. [Google Scholar] [CrossRef]
- Wang, X.; Ichikawa, K. Coastal waveform retracking for Jason-2 altimeter data based on along-track Echograms around the Tsushima Islands in Japan. Remote Sens. 2017, 9, 762. [Google Scholar] [CrossRef]
- Halimi, A.; Mailhes, C.; Tourneret, J.Y.; Snoussi, H. Bayesian estimation of smooth altimetric parameters: Application to conventional and delay/doppler altimetry. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2207–2219. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. A new retracking technique for Brown peaky altimetric waveforms. Mar. Geod. 2017, 41, 99–125. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, H.; Luo, Z.; Shum, C.K.; Tseng, K.-H.; Zhong, B. Improving Jason-2 Sea Surface Heights within 10 km Offshore by Retracking Decontaminated Waveforms. Remote Sens. 2017, 9, 1077. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z. Waveform Decontamination for Improving Satellite Radar Altimeter Data Over Nearshore Area: Upgraded Algorithm and Validation. Front. Earth Sci. 2021, 9, 748401. [Google Scholar] [CrossRef]
- Garcia, E.; Smith, W.H.F.; Sandwell, D.T. Retracking CryoSat-2, Envisat, and Jason-1 Radar Altimetry Waveforms for Improved Gravity Field Recovery. Geophys. J. Int. 2014, 196, 1402–1422. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Xu, M.; Yu, B.; Hinkel, K.M.; Huang, Y.; Yu, B. Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes. Remote Sens. Environ. 2020, 239, 111643. [Google Scholar] [CrossRef]
- Idris, N.H.; Deng, X.; Din, A.H.M.; Idris, N.H. CAWRES: A waveform retracking fuzzy expert system for optimizing coastal sea levels from Jason-1 and Jason-2 satellite altimetry data. Remote Sens. 2017, 9, 603. [Google Scholar] [CrossRef]
- Yuan, J.; Guo, J.; Zhu, C.; Hwang, C.; Yu, D.; Sun, M.; Mu, D. High-resolution sea level change around China seas revealed through multi-satellite altimeter data. Int. J. Appl. Earth Obs. 2021, 102, 102433. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, J.; Gao, J.; Liu, X.; Hwang, C.; Yu, S.; Yuan, J.; Ji, B.; Guan, B. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0. J. Geod. 2020, 94, 50. [Google Scholar] [CrossRef]
- Hsiao, Y.S.; Hwang, C.; Cheng, Y.S.; Chen, L.C.; Hsu, H.J.; Tsai, J.H.; Liu, C.L.; Wang, C.C.; Liu, Y.C.; Kao, Y.C. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery. Remote Sens. Environ. 2016, 176, 69–83. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, K.; Jiang, M. A New DOV Gridding Method and Its Application in Marine Gravity Recovery. IEEE Geosci. Remote Sens. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Wong, L.; Gore, R. Accuracy of geoid heights from modified Stokes kernels. Geophys. J. Int. 1969, 18, 81–91. [Google Scholar] [CrossRef]
- Knudsen, P.; Andersen, O.; Maximenko, N. A new ocean mean dynamic topography model, derived from a combination of gravity, altimetry and drifter velocity data. Adv. Space Res. 2021, 68, 1090–1102. [Google Scholar] [CrossRef]
- Mulet, S.; Rio, M.H.; Etienne, H.; Artana, C.; Cancet, M.; Dibarboure, G.; Feng, H.; Husson, R.; Picot, N.; Provost, C.; et al. The new CNES-CLS18 global mean dynamic topography. Ocean Sci. 2021, 17, 789–808. [Google Scholar] [CrossRef]
- Rio, M.H.; Mulet, S.; Picot, N. Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett. 2014, 41, 8918–8925. [Google Scholar] [CrossRef]
- Caballero, A.; Mulet, S.; Ayoub, N.; Manso-Narvarte, I.; Davila, X.; Boone, C.; Toublanc, F.; Rubio, A. Integration of HF radar observations for an enhanced coastal Mean Dynamic Topography. Front. Mar. Sci. 2020, 7, 588713. [Google Scholar] [CrossRef]
- Chang, X.T.; Li, J.C.; Zhang, C.Y.; Dang, Y.M.; Hu, J.G. Deduction and estimation of innermost zone effects in altimetry gravity algorithm. Chin. J. Geophys. 2005, 48, 1381–1387. [Google Scholar] [CrossRef]
- Zong, Z.; Bian, S.; Li, H.; Ji, B.; Ouyang, Y. Non-Singular Transformation for Inverting Gravity Anomalies Using Satellite Altimetry Data. IEEE Access 2021, 9, 96838–96850. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P.; Berry, P.A.M. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod. 2010, 84, 191–199. [Google Scholar] [CrossRef]
- Hwang, C.; Parsons, B. Gravity anomalies derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: A case study over the Reykjanes Ridge. Geophys. J. Int. 1995, 122, 551–568. [Google Scholar] [CrossRef]
- Small, C.; Sandwell, D.T. A comparison of satellite and shipboard gravity measurements in the Gulf of Mexico. Geophysics 1992, 57, 885–893. [Google Scholar] [CrossRef]
- Wan, X.; Annan, R.F.; Wang, W. Assessment of HY-2A GM data by deriving the gravity field and bathymetry over the Gulf of Guinea. Earth Planets Space 2020, 72, 151. [Google Scholar] [CrossRef]
- Ji, H.; Guo, J.; Zhu, C.; Yuan, J.; Liu, X.; Li, G. On Deflections of Vertical Determined From HY-2A/GM Altimetry Data in the Bay of Bengal. IEEE J-STARS 2021, 14, 12048–12060. [Google Scholar] [CrossRef]
- Annan, R.F.; Wan, X. Recovering Marine Gravity Over the Gulf of Guinea From Multi-Satellite Sea Surface Heights. Front. Earth Sci. 2021, 9, 700873. [Google Scholar] [CrossRef]
- Rapp, R.H. Gravity anomalies and sea surface heights derived from a combined GEOS-3/Seasat altimeter data set. J. Geophys. Res. Solid Earth 1986, 91, 4867–4876. [Google Scholar] [CrossRef]
- Shih, H.C.; Hwang, C.; Barriot, J.P.; Mouyen, M.; Corréia, P.; Lequeux, D.; Sichoix, L. High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: Data fusion by spectral combination. Earth Planets Space 2015, 67, 124. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Pham, V.T.; Van Nguyen, L.; Andersen, O.B.; Forsberg, R.; Bui, D.T. Marine gravity anomaly mapping for the Gulf of Tonkin area (Vietnam) using Cryosat-2 and Saral/AltiKa satellite altimetry data. Adv. Space Res. 2020, 66, 505–519. [Google Scholar] [CrossRef]
- Hwang, C.; Hsu, H.Y.; Jang, R.J. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: Applications of deflection-geoid and inverse Vening Meinesz formulae. J. Geod. 2002, 76, 407–418. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
Methods | Issues |
---|---|
Inverse Stokes formula | MDT + innermost zone effect |
Inverse Vening Meinesz formula | MDT + innermost zone effect + imbalance accuracy of vertical deflection components |
Laplace’s equation | MDT + imbalance accuracy of vertical deflection components |
Least squares collocation | MDT + Key parameters (covariance matrix) determination |
Model | Min | Max | Mean | STD | RMS | |
---|---|---|---|---|---|---|
Global [–80°S, 80°N] | DTU17 | −83.48 | 99.25 | −0.21 | 5.85 | 5.85 |
SDUST2021GRA | −82.97 | 99.12 | −0.17 | 5.62 | 5.62 | |
SIO V31.1 | −83.51 | 177.35 | −0.12 | 5.51 | 5.51 | |
High-latitude [−80°S, −66°S), (66°N, 80°N] | DTU17 | −83.48 | 99.25 | −1.96 | 11.73 | 11.89 |
SDUST2021GRA | −82.97 | 99.12 | −1.34 | 11.60 | 11.68 | |
SIO V31.1 | −81.10 | 76.25 | −3.03 | 10.34 | 10.78 | |
Low-middle latitude [−66°S, 66°N] | DTU17 | −71.85 | 78.44 | −0.13 | 5.38 | 5.38 |
SDUST2021GRA | −68.45 | 64.14 | −0.11 | 5.14 | 5.14 | |
SIO V31.1 | −83.51 | 177.35 | 0.02 | 5.10 | 5.10 |
Region | DTU17 | SDUST2021GRA | SIO V31.1 |
---|---|---|---|
Global | 4.79 | 4.50 | 4.37 |
High-latitude | 11.22 | 11.00 | 10.04 |
Low-middle latitude | 4.35 | 4.05 | 4.00 |
Range Away from the Coastline(km) | DTU17 | SDUST2021GRA | SIO V31.1 | |||
---|---|---|---|---|---|---|
Mean | RMS | Mean | RMS | Mean | RMS | |
[80, 100) | 0.19 | 4.73 | 0.03 | 4.53 | −0.03 | 4.86 |
[60, 80) | 0.85 | 5.20 | 0.03 | 5.25 | −0.03 | 4.97 |
[40, 60) | 0.17 | 5.43 | −0.12 | 5.22 | 0.07 | 5.06 |
[20, 40) | −2.09 | 7.72 | −1.87 | 7.01 | −1.90 | 7.72 |
[0, 20) | −1.84 | 9.65 | −1.54 | 8.96 | −0.21 | 8.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Guo, J.; Ji, B.; Wan, X.; Zhang, S. A Review of Marine Gravity Field Recovery from Satellite Altimetry. Remote Sens. 2022, 14, 4790. https://doi.org/10.3390/rs14194790
Li Z, Guo J, Ji B, Wan X, Zhang S. A Review of Marine Gravity Field Recovery from Satellite Altimetry. Remote Sensing. 2022; 14(19):4790. https://doi.org/10.3390/rs14194790
Chicago/Turabian StyleLi, Zhen, Jinyun Guo, Bing Ji, Xiaoyun Wan, and Shengjun Zhang. 2022. "A Review of Marine Gravity Field Recovery from Satellite Altimetry" Remote Sensing 14, no. 19: 4790. https://doi.org/10.3390/rs14194790
APA StyleLi, Z., Guo, J., Ji, B., Wan, X., & Zhang, S. (2022). A Review of Marine Gravity Field Recovery from Satellite Altimetry. Remote Sensing, 14(19), 4790. https://doi.org/10.3390/rs14194790