Eddy Induced Cross-Shelf Exchanges in the Black Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eddy Tracking with EddyScan
2.2. Volume Transport by Eddies
2.3. Lagrangian Particle Tracking
2.4. Cross-Shelf Volume Transport Calculations
3. Results
3.1. Anticyclonic Eddy along the Turkish Coast
3.2. Cyclonic Eddy along the Georgian Coast
3.3. Cross-Shelf Exchanges
3.3.1. Cross-Shelf Exchanges in Black Sea
3.3.2. Cross-Shelf Exchanges in the South-East Black Sea
3.3.3. Seasonality of Cross-Shelf Exchanges
4. Discussion
4.1. Eddies in the South-Eastern Black Sea
4.2. Cross-Shelf Exchanges in the Black Sea
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A. Seasonal and Interannual Variability of the Black Sea Surface Temperature as Revealed from Satellite Data (1982–2000). J. Mar. Syst. 2004, 52, 33–50. [Google Scholar] [CrossRef]
- Sakalli, A.; Başusta, N. Sea Surface Temperature Change in the Black Sea under Climate Change: A Simulation of the Sea Surface Temperature up to 2100. Int. J. Climatol. 2018, 38, 4687–4698. [Google Scholar] [CrossRef]
- Mohamed, B.; Ibrahim, O.; Nagy, H. Sea Surface Temperature Variability and Marine Heatwaves in the Black Sea. Remote Sens. 2022, 14, 2383. [Google Scholar] [CrossRef]
- Capet, A.; Barth, A.; Beckers, J.-M.; Marilaure, G. Interannual Variability of Black Sea’s Hydrodynamics and Connection to Atmospheric Patterns. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 128–142. [Google Scholar] [CrossRef]
- Akpinar, A.; Fach, B.A.; Oguz, T. Observing the Subsurface Thermal Signature of the Black Sea Cold Intermediate Layer with Argo Profiling Floats. Deep Sea Res. Part Oceanogr. Res. Pap. 2017, 124, 140–152. [Google Scholar] [CrossRef]
- Miladinova, S.; Stips, A.; Garcia-Gorriz, E.; Macias Moy, D. Black S Ea Thermohaline Properties: Long-term Trends and Variations. J. Geophys. Res. Ocean. 2017, 122, 5624–5644. [Google Scholar] [CrossRef]
- Stanev, E.V.; Chtirkova, B. Interannual Change in Mode Waters: Case of the Black Sea. J. Geophys. Res. Ocean. 2021, 126. [Google Scholar] [CrossRef]
- Oguz, T.; Latun, V.S.; Latif, M.A.; Vladimirov, V.V.; Sur, H.I.; Markov, A.A.; Özsoy, E.; Kotovshchikov, B.B.; Eremeev, V.V.; Ünlüata, Ü. Circulation in the Surface and Intermediate Layers of the Black Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 1993, 40, 1597–1612. [Google Scholar] [CrossRef]
- Korotaev, G. Seasonal, Interannual, and Mesoscale Variability of the Black Sea Upper Layer Circulation Derived from Altimeter Data. J. Geophys. Res. 2003, 108, 3122. [Google Scholar] [CrossRef]
- Stanev, E.V. On the Mechanisms of the Black Sea Circulation. Earth-Sci. Rev. 1990, 28, 285–319. [Google Scholar] [CrossRef]
- Grayek, S.; Stanev, E.V.; Kandilarov, R. On the Response of Black Sea Level to External Forcing: Altimeter Data and Numerical Modelling. Ocean Dyn. 2010, 60, 123–140. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V.; Volkov, D.L. Quantifying the Impact of Basin Dynamics on the Regional Sea Level Rise in the Black Sea. Ocean Sci. 2017, 13, 443–452. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V.; Zatsepin, A.G.; Kremenetskiy, V.V. Long-Term Variations of the Black Sea Dynamics and Their Impact on the Marine Ecosystem. J. Mar. Syst. 2016, 163, 80–94. [Google Scholar] [CrossRef]
- Miladinova, S.; Stips, A.; Macias Moy, D.; Garcia-Gorriz, E. Seasonal and Inter-Annual Variability of the Phytoplankton Dynamics in the Black Sea Inner Basin. Oceans 2020, 1, 251–273. [Google Scholar] [CrossRef]
- Cokacar, T.; Oguz, T.; Kubilay, N. Satellite-Detected Early Summer Coccolithophore Blooms and Their Interannual Variability in the Black Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 2004, 51, 1017–1031. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Mikaelyan, A.S.; Stanichny, S.V. Summer and Winter Coccolithophore Blooms in the Black Sea and Their Impact on Production of Dissolved Organic Matter from Bio-Argo Data. J. Mar. Syst. 2019, 199, 103220. [Google Scholar] [CrossRef]
- Kubryakova, E.A.; Kubryakov, A.A.; Mikaelyan, A.S. Winter Coccolithophore Blooms in the Black Sea: Interannual Variability and Driving Factors. J. Mar. Syst. 2021, 213, 103461. [Google Scholar] [CrossRef]
- Brink, K.H. Cross-Shelf Exchange. Annu. Rev. Mar. Sci. 2016, 8, 59–78. [Google Scholar] [CrossRef]
- Brink, K.H. Deep-Sea Forcing and Exchange Processes. Sea 1998, 10, 151–167. [Google Scholar]
- Sur, H.İ.; Özsoy, E.; Ünlüata, Ü. Boundary Current Instabilities, Upwelling, Shelf Mixing and Eutrophication Processes in the Black Sea. Prog. Oceanogr. 1994, 33, 249–302. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Kremenetskiy, V.V.; Podymov, O.I.; Ostrovskii, A.G. Study of the Effects of Ekman Dynamics in the Bottom Boundary Layer on the Black Sea Continental Slope. Russ. J. Earth Sci. 2020, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zatsepin, A.G. Observations of Black Sea Mesoscale Eddies and Associated Horizontal Mixing. J. Geophys. Res. 2003, 108, 3246. [Google Scholar] [CrossRef]
- Shapiro, G.I.; Stanichny, S.V.; Stanychna, R.R. Anatomy of Shelf–Deep Sea Exchanges by a Mesoscale Eddy in the North West Black Sea as Derived from Remotely Sensed Data. Remote Sens. Environ. 2010, 114, 867–875. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Bagaev, A.V.; Stanichny, S.V.; Belokopytov, V.N. Thermohaline Structure, Transport and Evolution of the Black Sea Eddies from Hydrological and Satellite Data. Prog. Oceanogr. 2018, 167, 44–63. [Google Scholar] [CrossRef]
- Oguz, T.; Rozman, L. Characteristics of the Mediterranean Underflow in the Southwestern Black-Sea Continental-Shelf Slope Region. Oceanol. Acta 1991, 14, 433–444. [Google Scholar]
- Kubryakov, A.A.; Stanichny, S.V. Seasonal and Interannual Variability of the Black Sea Eddies and Its Dependence on Characteristics of the Large-Scale Circulation. Deep Sea Res. Part Oceanogr. Res. Pap. 2015, 97, 80–91. [Google Scholar] [CrossRef]
- Beşiktepe, Ş.; Lozano, C.J.; Robinson, A.R. On the Summer Mesoscale Variability of the Black Sea. J. Mar. Res. 2001, 59, 475–515. [Google Scholar] [CrossRef]
- Blokhina, M.D.; Afanasyev, Y.D. Baroclinic Instability and Transient Features of Mesoscale Surface Circulation in the Black Sea: Laboratory Experiment. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef]
- Staneva, J.V.; Dietrich, D.E.; Stanev, E.V.; Bowman, M.J. Rim Current and Coastal Eddy Mechanisms in an Eddy-Resolving Black Sea General Circulation Model. J. Mar. Syst. 2001, 31, 137–157. [Google Scholar] [CrossRef]
- Elkin, D.N.; Zatsepin, A.G. Laboratory Investigation of the Mechanism of the Periodic Eddy Formation behind Capes in a Coastal Sea. Oceanology 2013, 53, 24–35. [Google Scholar] [CrossRef]
- Zatsepin, A.; Kubryakov, A.; Aleskerova, A.; Elkin, D.; Kukleva, O. Physical Mechanisms of Submesoscale Eddies Generation: Evidences from Laboratory Modeling and Satellite Data in the Black Sea. Ocean Dyn. 2019, 69, 253–266. [Google Scholar] [CrossRef]
- Özsoy, E.; Ünlüata, Ü. Oceanography of the Black Sea: A Review of Some Recent Results. Earth-Sci. Rev. 1997, 42, 231–272. [Google Scholar] [CrossRef]
- Sadighrad, E.; Fach, B.A.; Arkin, S.S.; Salihoğlu, B.; Hüsrevoğlu, Y.S. Mesoscale Eddies in the Black Sea: Characteristics and Kinematic Properties in a High-Resolution Ocean Model. J. Mar. Syst. 2021, 223, 103613. [Google Scholar] [CrossRef]
- Zhou, F.; Shapiro, G.; Wobus, F. Cross-Shelf Exchange in the Northwestern Black Sea. J. Geophys. Res. Ocean. 2014, 119, 2143–2164. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Nezlin, N.P.; Soloviev, D.M.; Stanichny, S.V. Anticyclonic Eddies in the Northwestern Black Sea. J. Mar. Syst. 2002, 32, 91–106. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Baranov, V.I.; Kondrashov, A.A.; Korzh, A.O.; Kremenetskiy, V.V.; Ostrovskii, A.G.; Soloviev, D.M. Submesoscale Eddies at the Caucasus Black Sea Shelf and the Mechanisms of Their Generation. Oceanology 2011, 51, 554–567. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Elkin, D.N.; Korzh, A.O.; Kuklev, S.B.; Podymov, O.I.; Ostrovskii, A.G.; Soloviev, D.M. On Influence of Current Variability in the Deep Black Sea upon Water Dynamics of Narrow North Caucasian Continental Shelf. Phys. Oceanogr. 2016, 3, 14–22. [Google Scholar] [CrossRef]
- Aleskerova, A.; Kubryakov, A.; Stanichny, S.; Medvedeva, A.; Plotnikov, E.; Mizyuk, A.; Verzhevskaia, L. Characteristics of Topographic Submesoscale Eddies off the Crimea Coast from High-Resolution Satellite Optical Measurements. Ocean Dyn. 2021, 71, 655–677. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Lishaev, P.N.; Chepyzhenko, A.I.; Aleskerova, A.A.; Kubryakova, E.A.; Medvedeva, A.V.; Stanichny, S.V. Impact of Submesoscale Eddies on the Transport of Suspended Matter in the Coastal Zone of Crimea Based on Drone, Satellite, and In Situ Measurement Data. Oceanology 2021, 61, 159–172. [Google Scholar] [CrossRef]
- Alkan, A.; Serdar, S.; Fidan, D.; Akbaş, U.; Zengin, B.; Kılıç, M.B. Physico-Chemical Characteristics and Nutrient Levels of the Eastern Black Sea Rivers. Turk. J. Fish. Aquat. Sci. 2013, 13, 847–859. [Google Scholar]
- Alkan, A.; Serdar, S.; Fidan, D.; Akbaş, U.; Zengin, B.; Kiliç, M.B. Spatial, Temporal, and Vertical Variability of Nutrients in the Southeastern Black Sea. Chemosphere 2022, 302, 134809. [Google Scholar] [CrossRef] [PubMed]
- Kubryakov, A.; Plotnikov, E.; Stanichny, S. Reconstructing Large- and Mesoscale Dynamics in the Black Sea Region from Satellite Imagery and Altimetry Data—A Comparison of Two Methods. Remote Sens. 2018, 10, 239. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Mizyuk, A.I.; Puzina, O.S.; Senderov, M.V. Three-Dimensional Identification of the Black Sea Mesoscale Eddies According to NEMO Numerical Model Calculations. Phys. Oceanogr. 2018, 25, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Mikaelyan, A.S.; Kubryakov, A.A.; Silkin, V.A.; Pautova, L.A.; Chasovnikov, V.K. Regional Climate and Patterns of Phytoplankton Annual Succession in the Open Waters of the Black Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 2018, 142, 44–57. [Google Scholar] [CrossRef]
- Kubryakov, A.; Stanichny, S.; Shokurov, M.; Garmashov, A. Wind Velocity and Wind Curl Variability over the Black Sea from QuikScat and ASCAT Satellite Measurements. Remote Sens. Environ. 2019, 224, 236–258. [Google Scholar] [CrossRef]
- Chashchin, A.K. The Black Sea Populations of Anchovy. Sci. Mar. 1996, 60, 219–225. [Google Scholar]
- Gücü, A.C.; Genç, Y.; Dağtekin, M.; Sakınan, S.; Ak, O.; Ok, M.; Aydın, İ. On Black Sea Anchovy and Its Fishery. Rev. Fish. Sci. Aquac. 2017, 25, 230–244. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V. Dynamics of Batumi Anticyclone from the Satellite Measurements. Phys. Oceanogr. 2015, 2, 59–68. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M. In Situ Autonomous Optical Radiometry Measurements for Satellite Ocean Color Validation in the Western Black Sea. Ocean Sci. 2015, 11, 275–286. [Google Scholar] [CrossRef]
- Kajiyama, T.; D’Alimonte, D.; Zibordi, G. Algorithms Merging for the Determination of Chlorophyll-a Concentration in the Black Sea. IEEE Geosci. Remote Sens. Lett. 2018, 16, 677–681. [Google Scholar] [CrossRef]
- Pisano, A.; Nardelli, B.B.; Tronconi, C.; Santoleri, R. The New Mediterranean Optimally Interpolated Pathfinder AVHRR SST Dataset (1982–2012). Remote Sens. Environ. 2016, 176, 107–116. [Google Scholar] [CrossRef]
- Saha, K.; Zhao, X.; Zhang, H.-M.; Casey, K.; Zhang, D.; Baker-Yeboah, S.; Kilpatrick, K.; Evans, R.; Ryan, T.; Relph, J. AVHRR Pathfinder Version 5.3 Level 3 Collated (L3C) Global 4 km Sea Surface Temperature for 1981-Present; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2018.
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-Based Time-Series of Sea-Surface Temperature since 1981 for Climate Applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Madec, G.; Bourdallé-Badie, R.; Bouttier, P.-A.; Bricaud, C.; Bruciaferri, D.; Calvert, D.; Chanut, J.; Clementi, E.; Coward, A.; Delrosso, D.; et al. NEMO Ocean Engine. 2017. Available online: https://zenodo.org/record/3248739 (accessed on 27 June 2022).
- Ducousso, N.; Sommer, J.L.; Molines, J.-M.; Bell, M. Impact of the “Symmetric Instability of the Computational Kind” at Mesoscale- and Submesoscale-Permitting Resolutions. Ocean Model. 2017, 120, 18–26. [Google Scholar] [CrossRef]
- Lévy, M.; Estublier, A.; Madec, G. Choice of an Advection Scheme for Biogeochemical Models. Geophys. Res. Lett. 2001, 28, 3725–3728. [Google Scholar] [CrossRef]
- Large, W.G.; Yeager, S.G. Diurnal to Decadal Global Forcing for Ocean and Sea-Ice Models: The Data Sets and Flux Climatologies; National Center for Atmospheric Research: Boulder, CO, USA, 2004. [Google Scholar]
- Faghmous, J.H.; Frenger, I.; Yao, Y.; Warmka, R.; Lindell, A.; Kumar, V. A Daily Global Mesoscale Ocean Eddy Dataset from Satellite Altimetry. Sci. Data 2015, 2, 150028. [Google Scholar] [CrossRef] [PubMed]
- Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard: Atlantic Water Eddies North of Svalbard. J. Geophys. Res. Ocean. 2018, 123, 201–215. [Google Scholar] [CrossRef]
- Cowen, R.K.; Paris, C.B.; Srinivasan, A. Scaling of Connectivity in Marine Populations. Science 2006, 311, 522–527. [Google Scholar] [CrossRef]
- Xu, Y.; Chai, F.; Rose, K.A.; Ñiquen C., M.; Chavez, F.P. Environmental Influences on the Interannual Variation and Spatial Distribution of Peruvian Anchovy (Engraulis ringens) Population Dynamics from 1991 to 2007: A Three-Dimensional Modeling Study. Ecol. Model. 2013, 264, 64–82. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V.; Zatsepin, A.G. Interannual Variability of Danube Waters Propagation in Summer Period of 1992–2015 and Its Influence on the Black Sea Ecosystem. J. Mar. Syst. 2018, 179, 10–30. [Google Scholar] [CrossRef]
- Miladinova, S.; Stips, A.; Macias Moy, D.; Garcia-Gorriz, E. Pathways and Mixing of the North Western River Waters in the Black Sea. Estuar. Coast. Shelf Sci. 2020, 236, 106630. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Puzina, O.S.; Mizyuk, A.I. Cross-Slope Buoyancy Fluxes Cause Intense Asymmetric Generation of Submesoscale Eddies on the Periphery of the Black Sea Mesoscale Anticyclones. J. Geophys. Res. Ocean. 2022, 127, e2021JC018189. [Google Scholar] [CrossRef]
- Stanev, E.V.; Staneva, J.V. The Impact of the Baroclinic Eddies and Basin Oscillations on the Transitions between Different Quasi-Stable States of the Black Sea Circulation. J. Mar. Syst. 2000, 24, 3–26. [Google Scholar] [CrossRef]
- Simpson, J.H.; McCandliss, R.R. “The Ekman Drain”: A Conduit to the Deep Ocean for Shelf Material. Ocean Dyn. 2013, 63, 1063–1072. [Google Scholar] [CrossRef]
- Shapiro, G.I.; Hill, A.E. Dynamics of Dense Water Cascades at the Shelf Edge. J. Phys. Oceanogr. 1997, 27, 2381–2394. [Google Scholar] [CrossRef]
- Kushnir, V. Bottom Boundary Layer in the Black Sea: Experimental Data, Turbulent Diffusion, and Fluxes. Oceanology 2007, 47, 33–41. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Golenko, N.N.; Korzh, A.O.; Kremenetskii, V.V.; Paka, V.T.; Poyarkov, S.G.; Stunzhas, P.A. Influence of the Dynamics of Currents on the Hydrophysical Structure of the Waters and the Vertical Exchange in the Active Layer of the Black Sea. Oceanology 2007, 47, 301–312. [Google Scholar] [CrossRef]
- Ostrovskii, A.G.; Zatsepin, A.G. Intense Ventilation of the Black Sea Pycnocline Due to Vertical Turbulent Exchange in the Rim Current Area. Deep Sea Res. Part Oceanogr. Res. Pap. 2016, 116, 1–13. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Belokopytov, V.N.; Zatsepin, A.G.; Stanichny, S.V.; Piotukh, V.B. The Black Sea Mixed Layer Depth Variability and Its Relation to the Basin Dynamics and Atmospheric Forcing. Phys. Oceanogr. 2019, 26, 397–413. [Google Scholar] [CrossRef]
- Marchesiello, P.; Debreu, L.; Couvelard, X. Spurious Diapycnal Mixing in Terrain-Following Coordinate Models: The Problem and a Solution. Ocean Model. 2009, 26, 156–169. [Google Scholar] [CrossRef]
- Graham, J.A.; Rosser, J.P.; O’Dea, E.; Hewitt, H.T. Resolving Shelf Break Exchange Around the European Northwest Shelf. Geophys. Res. Lett. 2018, 45, 12386–12395. [Google Scholar] [CrossRef]
- Akpınar, A.; Charria, G.; Theetten, S.; Vandermeirsch, F. Cross-Shelf Exchanges in the Northern Bay of Biscay. J. Mar. Syst. 2020, 205, 103314. [Google Scholar] [CrossRef]
- Bruciaferri, D.; Shapiro, G.; Stanichny, S.; Zatsepin, A.; Ezer, T.; Wobus, F.; Francis, X.; Hilton, D. The Development of a 3D Computational Mesh to Improve the Representation of Dynamic Processes: The Black Sea Test Case. Ocean Model. 2020, 146, 101534. [Google Scholar] [CrossRef]
Amplitude (cm) | Intensity | Surface Area (km2) | Radius (km) | |
---|---|---|---|---|
AE1998 (satellite) | 3.20 | 28.28 | 7.94 | 46.75 |
AE1998 (model) | 6.68 | 29.44 | 9.65 | 54.87 |
Amplitude (cm) | Intensity | Surface Area (km2) | Radius (km) | |
---|---|---|---|---|
CE2000 (satellite) | 2.04 | 17.76 | 6.32 | 41.91 |
CE2000 (model) | 5.63 | 13.80 | 5.14 | 38.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpınar, A.; Sadighrad, E.; Fach, B.A.; Arkın, S. Eddy Induced Cross-Shelf Exchanges in the Black Sea. Remote Sens. 2022, 14, 4881. https://doi.org/10.3390/rs14194881
Akpınar A, Sadighrad E, Fach BA, Arkın S. Eddy Induced Cross-Shelf Exchanges in the Black Sea. Remote Sensing. 2022; 14(19):4881. https://doi.org/10.3390/rs14194881
Chicago/Turabian StyleAkpınar, Anıl, Ehsan Sadighrad, Bettina A. Fach, and Sinan Arkın. 2022. "Eddy Induced Cross-Shelf Exchanges in the Black Sea" Remote Sensing 14, no. 19: 4881. https://doi.org/10.3390/rs14194881
APA StyleAkpınar, A., Sadighrad, E., Fach, B. A., & Arkın, S. (2022). Eddy Induced Cross-Shelf Exchanges in the Black Sea. Remote Sensing, 14(19), 4881. https://doi.org/10.3390/rs14194881