The Feature of Ionospheric Mid-Latitude Trough during Geomagnetic Storms Derived from GPS Total Electron Content (TEC) Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. Datasets
2.2. TEC Analysis Method
3. Results
3.1. August 2018 Storm
3.1.1. Geomagnetic Conditions
3.1.2. Ionospheric Storm Disturbance during the 2018 August Storm
3.2. September 2017 Storm
3.2.1. Geomagnetic Conditions
3.2.2. Ionospheric Storm Disturbance during the 2017 September Storm
3.3. March 2015 Storm
3.3.1. Geomagnetic Conditions
3.3.2. Ionospheric Storm Disturbance during the 2015 March Storm
4. Discussion
5. Conclusions
- (1)
- The temporal variation of the trough position in the night sector differs essentially from one storm to another. The temporal variation of the trough position in the night sector during geomagnetic storms is mainly related to the temporal variation of the geomagnetic activity. During geomagnetic storms, the trough appears earlier as compared with that during quiet days. The trough position moved equatorward by around 20°, 15°, and 14° for the storms on 26 August 2018, 8 September 2017, and 17 March 2015 respectively. The movements were larger than the statistical results. The trough stopped moving near the minima of SYM-H, accompanied by the northward turning of IMF Bz;
- (2)
- During the three intense geomagnetic storms, the temporal variation of the TEC value in the trough was similar to that during the quiet day. However, the TEC value in the trough during the initial phase and main phase of the three geomagnetic storms was larger than that during the quiet day;
- (3)
- During the three intense geomagnetic storms, the ionospheric behavior around the trough position displayed a negative ionospheric storm effect during the main phases of the three geomagnetic storms and the recovery phase of the 2015 March storm, unchanged ionospheric behavior during the first recovery phase of the 2017 September storm, and a positive ionospheric storm effect during the initial phase of the 2017 September storm. The negative ionospheric storm effect around the trough position during the main phases of the 2018 August storm and 2017 September storm, as well as the unchanged ionospheric behavior around the trough position during the first recovery phase of the 2017 September storm, are associated with the storm-associated displacement of the trough. These ionospheric storm effects around the trough position produced by the trough are limited to the narrow area of the trough, and are transmitted to other regions with the displacement of the trough. However, the rest of the ionospheric storm effects around the trough position are not limited to the narrow area of the trough, and cover a wide latitude range; these ionospheric storm effects are not caused by the trough.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muldrew, D.B. F-layer ionization troughs deduced from Alouette data. J. Geophys. Res. 1965, 70, 2635–2650. [Google Scholar] [CrossRef]
- Rodger, A.S.; Moffett, R.J.; Quegan, S. The role of ion drift in the formation of ionisation troughs in the mid- and high-latitude ionosphere-A review. J. Atmos. Terr. Phys. 1992, 54, 1–30. [Google Scholar] [CrossRef]
- Rodger, A. The Mid-Latitude trough: Revisited, in Midlatitude Ionospheric Dynamics and Disturbances; Geophysical Monograph Series; Kintner, P.M., Jr., Coster, A.J., Fuller-Rowell, T., Mannucci, A.J., Mendillo, M., Heelis, R., Eds.; AGU: Washington, DC, USA, 2008; Volume 181, pp. 25–33. [Google Scholar]
- He, M.; Liu, L.; Wan, W.; Zhao, B. A study on the nighttime midlatitude ionospheric trough. J. Geophys. Res. 2011, 116, A05315. [Google Scholar] [CrossRef]
- Yang, N.; Le, H.; Liu, L. Statistical analysis of ionospheric mid-latitude trough over the Northern Hemisphere derived from GPS total electron content data. Earth Planets Space 2015, 67, 196. [Google Scholar] [CrossRef] [Green Version]
- Castaño, J.M.; Natali, M.P.; Meza, A. Postmidnight mid-latitude ionospheric trough position oscillations during solar cycle 24. Adv. Space Res. 2021, 68, 1876–1889. [Google Scholar] [CrossRef]
- Prölss, G.W.; Brace, L.H.; Mayr, H.G.; Carignan, G.R.; Killeen, T.L.; Klobuchar, J.A. Ionospheric storm effects at subauroral latitudes: A case study. J. Geophys. Res. 1991, 96, 1275–1288. [Google Scholar] [CrossRef]
- Deminov, M.G.; Karpachev, A.T.; Annakuliev, S.K.; Afonin, V.V.; Smilauer, Y. Dynamics of the ionization troughs in the night-time subauroral F-region during geomagnetic storms. Adv. Space Res. 1996, 17, 141–145. [Google Scholar] [CrossRef]
- Shinbori, A.; Otsuka, Y.; Tsugawa, T.; Nishioka, M.; Kumamoto, A.; Tsuchiya, F.; Matsuda, S.; Kasahara, Y.; Matsuoka, A.; Ruohoniemi, J.M.; et al. Temporal and spatial variations of storm time midlatitude ionospheric trough based on global GNSS-TEC and Arase satellite observations. Geophys. Res. Lett. 2018, 45, 7362–7370. [Google Scholar] [CrossRef]
- Blagoveshchensky, D.V.; Lester, M.; Kornienko, V.A.; Shagimuratov, I.I.; Stocker, A.J.; Warrington, E.M. Observations by the CUTLASS radar, HF Doppler, oblique ionospheric sounding, and TEC from GPS during a magnetic storm. Ann. Geophys. 2005, 23, 1697–1709. [Google Scholar] [CrossRef] [Green Version]
- Galav, P.; Rao, S.S.; Sharma, S.; Gordiyenko, G.; Pandey, R. Ionospheric response to the geomagnetic storm of 15 May 2005 over midlatitudes in the day and night sectors simultaneously. J. Geophys. Res. Space Phys. 2014, 119, 5020–5031. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm. J. Geophys. Res. Space Phys. 2015, 120, 7822–7837. [Google Scholar] [CrossRef]
- Nayak, C.; Tsai, L.-C.; Su, S.-Y.; Galkin, I.A.; Tan, A.T.K.; Nofri, E.; Jamjareegulgarn, P. Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick’s Day geomagnetic storm of 17 March 2015. J. Geophys. Res. Space Phys. 2016, 121, 7941–7960. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Fu, L.; Zhang, C. Studying the ionospheric responses induced by a geomagnetic storm in September 2017 with multiple observations in America. GPS Solut. 2020, 24, 3. [Google Scholar] [CrossRef]
- Danilov, A.D. Ionospheric f-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [Google Scholar] [CrossRef]
- Huo, X.; Yuan, Y.; Ou, J.; Li, Z.; Wang, N. A new ionospheric tomographic algorithm taking into account the variation of the ionosphere. Chin. J. Geophys. Chin. Ed. 2016, 59, 2393–2401. [Google Scholar]
- Zhang, W.; Huo, X.; Yuan, Y.; Li, Z.; Wang, N. Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. Remote Sens. 2021, 13, 4002. [Google Scholar] [CrossRef]
- Langley, R.B. Propagation of the GPS signals. In GPS for Geodesy; Kleusberg, A., Teunissen, P., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1996; pp. 103–140. [Google Scholar]
- Rideout, W.; Coster, A. Automated GPS processing for global total electron content data. GPS Solut. 2006, 10, 219–228. [Google Scholar] [CrossRef]
- Yang, N.; Le, H.; Liu, L. Statistical analysis of the midlatitude trough position during different categories of magnetic storms and different storm intensities. Earth Planets Space 2016, 68, 171. [Google Scholar] [CrossRef] [Green Version]
- Le, H.; Yang, N.; Liu, L.; Chen, Y.; Zhang, H. The latitudinal structure of nighttime ionospheric TEC and its empirical orthogonal functions model over North American sector. J. Geophys. Res. Space Phys. 2017, 122, 963–977. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef] [Green Version]
- Vanlommel, P. Solar-Terrestrial Centre of Excellence (STCE) Newsletter, 20–26 August 2018. Available online: http://www.stce.be/newsletter/pdf/2018/STCEnews20180831.pdf (accessed on 1 December 2021).
- Li, Q.; Huang, F.; Zhong, J.; Zhang, R.; Kuai, J.; Lei, J.; Liu, L.; Ren, D.; Ma, H.; Yoshikawa, A.; et al. Persistence of the long-duration daytime TEC enhancements at different longitudinal sectors during the August 2018 geomagnetic storm. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028238. [Google Scholar] [CrossRef]
- Schunk, R.W.; Banks, P.M.; Raitt, W.J. Effects of electric fields and other processes upon the nighttime high-latitude F layer. J. Geophys. Res. 1976, 81, 3271–3282. [Google Scholar] [CrossRef]
- Lam, M.M.; Horne, R.B.; Meredith, N.P.; Glauert, S.A.; Moffat-Griffin, T.; Green, J.C. Origin of energetic electron precipitation >30 keV into the atmosphere. J. Geophys. Res. 2010, 115, A00F08. [Google Scholar] [CrossRef]
- Zou, S.; Moldwin, M.B.; Coster, A.; Lyons, L.R.; Nicolls, M.J. GPS TEC observations of dynamics of the mid-latitude trough during substorms. Geophys. Res. Lett. 2011, 38, L14109. [Google Scholar] [CrossRef] [Green Version]
- Balan, N.; Bailey, G.J.; Nair, R.B. Solar and magnetic activity effects on the latitudinal variations of nighttime tec enhancement. Ann. Geophys. 1991, 9, 120–128. [Google Scholar] [CrossRef]
- Lei, J.; Huang, F.; Chen, X.; Zhong, J.; Ren, D.; Wang, W.; Yue, X.; Luan, X.; Jia, M.; Dou, X.; et al. Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector Between 7 and 12 September 2017? J. Geophys. Res. Space Phys. 2018, 123, 3217–3232. [Google Scholar] [CrossRef]
- Li, R.; Lei, J. Responses of thermospheric mass densities to the October 2016 and September 2017 geomagnetic storms revealed from multiple satellite observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028534. [Google Scholar] [CrossRef]
- Liu, L.; Wan, W.; Zhang, M.-L.; Zhao, B. Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms. Ann. Geophys. 2008, 26, 893–903. [Google Scholar]
- Jimoh, O.; Lei, J.; Huang, F. Investigation of Daytime Total Electron Content Enhancements over the Asian-Australian Sector Observed from the Beidou Geostationary Satellite during 2016–2018. Remote Sens. 2020, 12, 3406. [Google Scholar] [CrossRef]
- Tsagouri, I.; Belehaki, A.; Moraitis, G.; Mavromichalaki, H. Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys. Res. Lett. 2000, 27, 3579–3582. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lei, J.; Burns, A.G.; Solomon, S.C.; Wiltberger, M.; Xu, J.; Zhang, Y.; Paxton, L.; Coster, A. Ionospheric response to the initial phase of geomagnetic storms: Common features. J. Geophys. Res. Space Phys. 2010, 115, A07321. [Google Scholar] [CrossRef]
- Lei, J.; Wang, W.; Burns, A.G.; Solomon, S.C.; Richmond, A.D.; Wiltberger, M.; Goncharenko, L.P.; Coster, A.; Reinisch, B.W. Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J. Geophys. Res. 2008, 113, A01314. [Google Scholar] [CrossRef]
- Karpachev, A.T. The dependence of the main ionospheric trough shape on longitude, altitude, season, local time, and solar and magnetic activity. Geomag. Aeron. 2003, 43, 239–251. [Google Scholar]
- Buonsanto, M.J. Ionospheric storms-a review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Kuai, J.; Liu, L.; Liu, J.; Sripathi, S.; Zhao, B.; Chen, Y.; Le, H.; Hu, L. Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2016, 121, 9111–9126. [Google Scholar] [CrossRef]
- Karpachev, A.T. Dynamics of main and ring ionospheric troughs at the recovery phase of storms/substorms. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028079. [Google Scholar] [CrossRef]
- Spiro, R.W.; Wolf, R.A.; Fejer, B.G. Penetration of high latitude electric fields effects to low latitudes during SUNDIAL 1984. Ann. Geophys. 1988, 6, 39–50. [Google Scholar]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Elsevier: London, UK, 2009. [Google Scholar]
- Pryse, S.E.; Kersley, L.; Malan, D.; Bishop, G.J. Parameterization of the main ionospheric trough in the European sector. Radio Sci. 2006, 41, RS5S14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiong, C. Morphology evolution of the mid-latitude ionospheric trough in nighttime under geomagnetic quiet conditions. J. Geophys. Res. Space Phys. 2020, 125, e27361. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Rees, D. A three-dimensional simulation of the global dynamical response of the thermosphere to a geomagnetic substorm. J. Atmos. Terr. Phys. 1981, 43, 701. [Google Scholar] [CrossRef]
- Wang, W.; Talaat, E.R.; Burns, A.G.; Emery, B.; Hsieh, S.; Lei, J.; Xu, J. Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations. J. Geophys. Res. 2012, 117, A07301. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Yu, T.; Le, H.; Liu, L.; Sun, Y.-Y.; Yan, X.; Wang, J.; Xia, C.; Zuo, X.; Huang, G. The Feature of Ionospheric Mid-Latitude Trough during Geomagnetic Storms Derived from GPS Total Electron Content (TEC) Data. Remote Sens. 2022, 14, 369. https://doi.org/10.3390/rs14020369
Yang N, Yu T, Le H, Liu L, Sun Y-Y, Yan X, Wang J, Xia C, Zuo X, Huang G. The Feature of Ionospheric Mid-Latitude Trough during Geomagnetic Storms Derived from GPS Total Electron Content (TEC) Data. Remote Sensing. 2022; 14(2):369. https://doi.org/10.3390/rs14020369
Chicago/Turabian StyleYang, Na, Tao Yu, Huijun Le, Libo Liu, Yang-Yi Sun, Xiangxiang Yan, Jin Wang, Chunliang Xia, Xiaomin Zuo, and Guangliang Huang. 2022. "The Feature of Ionospheric Mid-Latitude Trough during Geomagnetic Storms Derived from GPS Total Electron Content (TEC) Data" Remote Sensing 14, no. 2: 369. https://doi.org/10.3390/rs14020369
APA StyleYang, N., Yu, T., Le, H., Liu, L., Sun, Y. -Y., Yan, X., Wang, J., Xia, C., Zuo, X., & Huang, G. (2022). The Feature of Ionospheric Mid-Latitude Trough during Geomagnetic Storms Derived from GPS Total Electron Content (TEC) Data. Remote Sensing, 14(2), 369. https://doi.org/10.3390/rs14020369