A Random Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. Image Collection
2.2.2. Image Processing
2.3. Methods
2.3.1. NDWI and MNDWI
2.3.2. Random Forest Algorithm
- (1)
- Using put-back sampling, the statistical DN values and the probabilities of the reference images serve as the original dataset from which a subset of data is constructed with the same amount of data as the original dataset [48]. The size of each bagging is approximately 1/2 of the original data, and the size of the test dataset is about 1/2 of the original dataset, which is known as the out-of-bag (OOB) data. The above parameters are the default values for the bag fraction parameter of the GEE randomization algorithm.
- (2)
- According to the principle of minimum Gini coefficient, N bagging groups are randomly selected to form N decision trees, and multiple CART decision trees are constructed using the subsets of each node variable after internal splitting to form a random forest [44]; the number of trees selected in this study is 100.
- (3)
- Statistics of image DN values and probability distributions. The magnitude of DN values in each band of the reference image and the target image are counted using the probability distributions function, and the probability distribution of the DN values of the images are counted using the cumulative distribution function to compare the differences between the reference image and the target image. The image DN values and probability distributions are prepared for the next step of random forest classification.
- (4)
- The generated random forest classifier classifies the data. The reference image and the image to be restored are assigned DN values, and their probability distributions are classified by the random forest algorithm according to the above steps in the following process: (1) The DN value classifier of the reference image is derived according to the statistical DN values of each band of the reference image as a training subset using the random forest function. (2) The probability of the DN value of each band of the image to be restored is used as the training subset, and the random forest function is used to derive the probability classifier of the image to be restored. (3) The DN values of the reference image are matched with the DN values of the restored image using the DN value classifier of the reference image to map the probability distribution of the DN values of the reference image to the reference image.
3. Results
3.1. Single-Image Analysis
3.2. Multi-Source Image Comparison Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Fu, C.-S. Mapping regional forest management units: A road-based framework in Southeastern Coastal Plain and Piedmont. For. Ecosyst. 2021, 8, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Zipper, C.E.; Donovan, P.F.; Wynne, R.H.; Oliphant, A.J. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery. Environ. Monit. Assess. 2015, 187, 4766. [Google Scholar] [CrossRef]
- Mutanga, O.; Dube, T.; Galal, O. Remote sensing of crop health for food security in Africa: Potentials and constraints. Remote Sens. Appl. Soc. Environ. 2017, 8, 231–239. [Google Scholar] [CrossRef]
- Neshaei, S.A.; Safaval, P.A.; Zarkesh, M.M.K.; Karimi, P. Study of morphological changes and sustainable development on the southern coasts of the caspian sea using remote sensing and GIS. WIT Trans. Ecol. Environ. 2018, 217, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Eliu, P. A survey of remote-sensing big data. Front. Environ. Sci. 2015, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Han, Y.; Fang, Y. Improved Mask dodging algorithm for aerial imagery. Yaogan Xuebao/J. Remote Sens. 2014, 18, 630–641. [Google Scholar] [CrossRef]
- Du, Y.; Cihlar, J.; Beaubien, J.; Latifovic, R. Radiometric normalization, compositing, and quality control for satellite high resolution image mosaics over large areas. IEEE Trans. Geosci. Remote Sens. 2001, 39, 623–634. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yan, X.G.; Yan, X.X.; Guo, W.; Wang, K.W.; Qiao, J. Temporal and spatial variation characteristic of vegetation coverage in the Yellow River Basin based on GEE cloud platform. J. China Coal Soc. 2021, 46, 1439–1450. [Google Scholar]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Miao, H.; Liang, J.; Yang, Z.; Zhang, Y.; Ma, T. Identification of cultivated land change trajectory and analysis of its process characteristics using time-series Landsat images: A study in the overlapping areas of crop and mineral production in Yanzhou City, China. Sci. Total Environ. 2021, 806, 150318. [Google Scholar] [CrossRef]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Coll, J.; University of Kansas; Li, X. Google Earth Engine. In The Geographic Information Science & Technology Body of Knowledge; University Consortium Geographic Information Science: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Huang, C.; Duan, H.; Gu, J.; Hou, J. Lake Phenology of Freeze-Thaw Cycles Using Random Forest: A Case Study of Qinghai Lake. Remote Sens. 2020, 12, 4098. [Google Scholar] [CrossRef]
- Kumari, N.; Srivastava, A.; Kumar, S. Hydrological Analysis Using Observed and Satellite-Based Estimates: Case Study of a Lake Catchment in Raipur, India. J. Indian Soc. Remote Sens. 2021, 50, 115–128. [Google Scholar] [CrossRef]
- Mehmood, H.; Conway, C.; Perera, D. Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform. Atmosphere 2021, 12, 866. [Google Scholar] [CrossRef]
- Ahmed, K.R.; Akter, S. Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with landsat multi-spectral surface reflectance satellite data. Remote Sens. Appl. Soc. Environ. 2017, 8, 168–181. [Google Scholar] [CrossRef]
- Ashok, A.; Rani, H.P.; Jayakumar, K. Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery. Remote Sens. Appl. Soc. Environ. 2021, 23, 100547. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Titolo, A. Use of Time-Series NDWI to Monitor Emerging Archaeological Sites: Case Studies from Iraqi Artificial Reservoirs. Remote Sens. 2021, 13, 786. [Google Scholar] [CrossRef]
- Souza, W.D.O.; Gustavo, L.; Reis, D.M.; Ruiz-armenteros, A.M.; Veleda, D.; Neto, A.R.; Ruberto, C.; Jr, F.; Joaquim, J.; Cabral, P. Analysis of Environmental and Atmospheric Influences in the Use of SAR and Optical Imagery from Sentinel-1, Landsat-8, and Sentinel-2 in the Operational Monitoring of Reservoir Water Level. Remote Sens. 2022, 14, 2218. [Google Scholar] [CrossRef]
- Sun, M.; Zhanga, J. Dodging Research for Digital Aerial Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII Par, 349–354. [Google Scholar]
- Helmer, E.H.; Ruefenacht, B. Cloud-free satellite image mosaics with regression trees and histogram matching. Photogramm. Eng. Remote Sens. 2005, 71, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X. Multiple Auto-Adapting Color Balancing for Large Number of Images. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Foody, G.M.; Cutler, M.E. Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks. Ecol. Model. 2006, 195, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Chen, M.; Liu, S.; Shao, Z.; Zhou, X.; Liu, P. Illumination and Contrast Balancing for Remote Sensing Images. Remote Sens. 2014, 6, 1102–1123. [Google Scholar] [CrossRef]
- Fu, X.; Sun, Y.; LiWang, M.; Huang, Y.; Zhang, X.-P.; Ding, X. A novel retinex based approach for image enhancement with illumination adjustment. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1190–1194. [Google Scholar] [CrossRef]
- Richter, R. A fast atmospheric correction algorithm applied to Landsat TM images. Int. J. Remote Sens. 1990, 11, 159–166. [Google Scholar] [CrossRef]
- Pinedo-Escatel, J.A.; Aragón-Parada, J.; Dietrich, C.H.; Moya-Raygoza, G.; Zahniser, J.N.; Portillo, L. Biogeographical evaluation and conservation assessment of arboreal leafhoppers in the Mexican Transition Zone biodiversity hotspot. Divers. Distrib. 2021, 27, 1051–1065. [Google Scholar] [CrossRef]
- Lopez, Y.; Berkes, F. Restoring the environment, revitalizing the culture: Cenote conservation in Yucatan, Mexico. Ecol. Soc. 2017, 22, 7. [Google Scholar] [CrossRef]
- McColl, R.W. Encyclopedia of World Geography; Infobase Publishing: New York, NY, USA, 2005; p. 1216. [Google Scholar]
- Adame, M.F.; Santini, N.S.; Torres-Talamante, O.; Rogers, K. Mangrove sinkholes (cenotes) of the Yucatan Peninsula, a global hotspot of carbon sequestration. Biol. Lett. 2021, 17, 20210037. [Google Scholar] [CrossRef] [PubMed]
- Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A. Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinco-Castro, S.; Herrera-Silveira, J. Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan Peninsula. Ocean Coast. Manag. 2020, 192, 105196. [Google Scholar] [CrossRef]
- Torrescano-Valle, N.; Folan, W.J. Physical Settings, Environmental History with an Outlook on Global Change. In Biodiversity and Conservation of the Yucatán Peninsula; Springer: Cham, Switzerland, 2015; pp. 9–37. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A New Global Map of Terrestrial Ecoregions Provides an Innovative Tool for Conserving Biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- McFeeters, S.K. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming Pools for Mosquito Abatement: A Practical Approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Reza, M.; Miri, S.; Javidan, R. A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Shang, J.; Zhu, Q.; Ling, C.; Xie, W.; Qiang, B. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. In WISE 2020: Web Information Systems Engineering—WISE 2020; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12343, pp. 503–515. [Google Scholar] [CrossRef]
- Chen, C.; Liaw, A.; Breiman, L. Using Random Forest to Learn Imbalanced Data. Discovery 1–12. Available online: https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf (accessed on 6 September 2022).
- Sadras, V.; Bongiovanni, R. Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crop. Res. 2004, 90, 303–310. [Google Scholar] [CrossRef]
Satellite Type | Image Collection Name | Date | Resolution |
---|---|---|---|
Landsat 1 | LANDSAT/LT05/C01/T1_TOA Landsat 5 TM Collection 1 Tier 1 calibrated Top of Atmosphere Reflectance | 1993–2001 | 30 m |
LANDSAT/LT05/C01/T1_SR Landsat 5 TM Collection 1 Tier 1 calibrated Surface Reflectance | |||
LANDSAT/LC08/C01/T1_TOA Landsat 8 Collection 1 Tier 1 calibrated Top of Atmosphere Reflectance | 2013–2022 | ||
LANDSAT/LC08/C01/T1_SR Landsat 8 Collection 1 Tier 1 calibrated Surface Reflectance | |||
LANDSAT/LC8_L1T_ANNUAL_NDWI Landsat 8 Collection 1 Level L1T orthorectified scenes annual composite NDWI | 2013–2017 | ||
LANDSAT/LC8_L1T_32DAY_NDWI Landsat 8 Collection 1 Level L1T orthorectified scenes 32 day composite NDWI | |||
LANDSAT/LC8_L1T_8DAY_NDWI Landsat 8 Collection 1 Level L1T orthorectified scenes 8 day composite NDWI | |||
MODIS 2 | MODIS/MCD43A4_006_NDWI MCD43A4.006 MODIS Nadir BRDF-Adjusted Reflectance Daily 16 day composite NDWI | 2000–2022 | 500 m |
Sentinel-2 3 | COPERNICUS/S2 Level-1C The Sentinel-2 data contain 13 UINT16 spectral bands representing TOA reflectance scaled by 10000 | 2015–2022 | 10 m |
Landsat TOA | Landsat SR | ||||||||
---|---|---|---|---|---|---|---|---|---|
Original | Restoration | Original | Restoration | ||||||
Year | Index | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation |
1998 | NDWI | 0.5765 | 0.1165 | 0.6065 | 0.0982 | 0.6373 | 0.2255 | 0.7008 | 0.1643 |
MNDWI | 0.8751 | 0.0998 | 0.8872 | 0.0783 | 0.8299 | 0.1868 | 0.8638 | 0.1459 | |
2016 | NDWI | 0.6486 | 0.1414 | 0.6533 | 0.1400 | 0.7569 | 0.2432 | 0.7814 | 0.2320 |
MNDWI | 0.8498 | 0.0900 | 0.8548 | 0.0883 | 0.6262 | 0.2995 | 0.6336 | 0.2996 |
NDWI | Min | Max | Mean | stdDev | |
---|---|---|---|---|---|
Landsat | TOA | −0.4465 | 0.8590 | 0.7595 | 0.0194 |
SR | −0.6822 | 0.9999 | 0.9530 | 0.2441 | |
ANNUAL | −0.2335 | 0.8764 | 0.2478 | 0.0705 | |
32DAY | 0.0469 | 1 | 0.5473 | 0.0568 | |
8DAY | 0.1204 | 1 | 0.5758 | 0.0679 | |
MODIS | MOD13Q1 | −0.9999 | 1 | 0.8312 | 0.2827 |
Sentinel-2 | Level-1C | −0.6911 | 0.8579 | 0.7499 | 0.1310 |
Landsat | MODIS | Sentinel-2 | ||||||
NDWI | TOA | SR | ANNUAL | 32 Day | 8 Day | MOD13Q1 | Level-1C | |
Landsat | TOA | 1 | 0.8760 | 0.2843 | −0.0190 | 0.1734 | 0.1684 | 0.5236 |
SR | 0.8755 | 1 | 0.2789 | 0.0010 | 0.1081 | 0.1698 | 0.5350 | |
ANNUAL | 0.2789 | 0.2763 | 1 | 0.1137 | 0.2219 | 0.0103 | −0.0419 | |
32DAY | −0.0190 | 0.0007 | 0.1137 | 1 | 0.7096 | −0.0588 | −0.1336 | |
8DAY | 0.1711 | 0.1069 | 0.2219 | 0.7096 | 1 | 0.0362 | −0.0806 | |
MODIS | MOD13Q1 | 0.1672 | 0.1689 | 0.0103 | −0.0588 | 0.0362 | 1 | 0.2197 |
Sentinel-2 | Level-1C | 0.5269 | 0.5358 | −0.0419 | −0.1336 | −0.0806 | 0.2197 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Li, J.; Yang, D.; Li, J.; Ma, T.; Su, Y.; Shao, J.; Zhang, R. A Random Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula, Mexico. Remote Sens. 2022, 14, 5154. https://doi.org/10.3390/rs14205154
Yan X, Li J, Yang D, Li J, Ma T, Su Y, Shao J, Zhang R. A Random Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula, Mexico. Remote Sensing. 2022; 14(20):5154. https://doi.org/10.3390/rs14205154
Chicago/Turabian StyleYan, Xingguang, Jing Li, Di Yang, Jiwei Li, Tianyue Ma, Yiting Su, Jiahao Shao, and Rui Zhang. 2022. "A Random Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula, Mexico" Remote Sensing 14, no. 20: 5154. https://doi.org/10.3390/rs14205154
APA StyleYan, X., Li, J., Yang, D., Li, J., Ma, T., Su, Y., Shao, J., & Zhang, R. (2022). A Random Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula, Mexico. Remote Sensing, 14(20), 5154. https://doi.org/10.3390/rs14205154