A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network
Abstract
:1. Introduction
2. Data and Preprocessing
3. Methodology
3.1. Structure of the DSLN
3.2. NDVI Fusion Module
3.3. Implementation Details of the DSLN
3.4. Experimental Implementation Details
3.5. Comparison Method and Evaluation Metrics
4. Results and Analysis
4.1. Comparison of Results with Other Models
4.2. Impact of Network Structure Adjustment
4.2.1. Comparison of Classification Results of Different Normalization Methods
4.2.2. Comparison of Classification Results for Different NDVI Fusion Methods
4.3. Model Suitability Verification
4.4. Practical Application Verification of the DSLN Network Model on ESV
4.4.1. Model Application Area
4.4.2. Change in ESV
4.4.3. Ecosystem Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alexander, H. Nature’s Services: Societal Dependence on Natural Ecosystems Edited by Gretchen C. Daily Island Press, 1997, $24.95, 392 Pages. Corp. Environ. Strategy 1999, 6, 219. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of Natural and Social Science Interactions in Global Change Research Programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Xu, M.; Cao, C.; Singh, R.P.; Chen, W.; Ju, H. Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018. Sustainability 2018, 10, 3580. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; Defries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for Managing Ecosystem Services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Chen, L.; Bi, F.K.; Chen, H.; Yu, Y. Accurate Urban Area Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1948–1952. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef] [Green Version]
- Tuia, D.; Persello, C.; Bruzzone, L. Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances. IEEE Geosci. Remote Sens. Mag. 2016, 4, 41–57. [Google Scholar] [CrossRef]
- Bruzzone, L.; Carlin, L. A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef] [Green Version]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Thyagharajan, K.K.; Vignesh, T. Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review. Arch. Comput. Methods Eng. 2019, 26, 275–301. [Google Scholar] [CrossRef]
- Yin, J.; Dong, J.; Hamm, N.A.S.; Li, Z.; Wang, J.; Xing, H.; Fu, P. Integrating Remote Sensing and Geospatial Big Data for Urban Land Use Mapping: A Review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- Wambugu, N.; Chen, Y.; Xiao, Z.; Tan, K.; Wei, M.; Liu, X.; Li, J. Hyperspectral Image Classification on Insufficient-Sample and Feature Learning Using Deep Neural Networks: A Review. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102603. [Google Scholar] [CrossRef]
- Nghiyalwa, H.S.; Urban, M.; Baade, J.; Smit, I.P.J.; Ramoelo, A.; Mogonong, B.; Schmullius, C. Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems: A Review. Remote Sens. 2021, 13, 3870. [Google Scholar] [CrossRef]
- Xu, S.; Pan, X.; Li, E.; Wu, B.; Bu, S.; Dong, W.; Xiang, S.; Zhang, X. Automatic Building Rooftop Extraction from Aerial Images via Hierarchical RGB-D Priors. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7369–7387. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Xiang, X.; Li, S.; Benediktsson, J.A. PCA-Based Edge-Preserving Features for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7140–7151. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A.; Havstad, K.M.; Paris, J.F.; Beck, R.F.; McNeely, R.; Gonzalez, A.L. Object-Oriented Image Analysis for Mapping Shrub Encroachment from 1937 to 2003 in Southern New Mexico. Remote Sens. Environ. 2004, 93, 198–210. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Feng, L.; Zhang, X.; Hu, X. Adaptive Scale Selection for Multiscale Segmentation of Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3641–3651. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, J.; Xiao, L.; Pan, D. Optimizing Multiscale Segmentation with Local Spectral Heterogeneity Measure for High Resolution Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2019, 157, 13–25. [Google Scholar] [CrossRef]
- Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2Net: A New Multi-Scale Backbone Architecture. IEEE Trans Pattern Anal. Mach. Intell. 2021, 43, 652–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaihuni, M.; Khan, F.; Lee, D.; Basak, J.K.; Bhujel, A.; Moon, B.E.; Park, J.; Kim, H.T. Determining Spatiotemporal Distribution of Macronutrients in a Cornfield Using Remote Sensing and a Deep Learning Model. IEEE Access 2021, 9, 30256–30266. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 11716. [Google Scholar] [CrossRef]
- Xu, Z.-F.; Jia, R.-S.; Yu, J.-T.; Yu, J.-Z.; Sun, H.-M. Fast Aircraft Detection Method in Optical Remote Sensing Images Based on Deep Learning. J. Appl. Remote Sens. 2021, 15, 014502. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R.; Masemola, C.; Sibanda, M. Deep Learning Approaches in Remote Sensing of Soil Organic Carbon: A Review of Utility, Challenges, and Prospects. Environ. Monit. Assess. 2021, 193, 802. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Yang, H.; Wu, Y.; Wu, P.; Wang, B.; Zhou, X.; Wang, S. Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features. Sensors 2019, 19, 2792. [Google Scholar] [CrossRef] [Green Version]
- Wambugu, N.; Chen, Y.; Xiao, Z.; Wei, M.; Aminu Bello, S.; Marcato Junior, J.; Li, J. A Hybrid Deep Convolutional Neural Network for Accurate Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102515. [Google Scholar] [CrossRef]
- Shan, L.; Wang, W. DenseNet-Based Land Cover Classification Network with Deep Fusion. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2500705. [Google Scholar] [CrossRef]
- Zuo, R.; Zhang, G.; Zhang, R.; Jia, X. A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4406314. [Google Scholar] [CrossRef]
- Boulila, W.; Sellami, M.; Driss, M.; Al-Sarem, M.; Safaei, M.; Ghaleb, F.A. RS-DCNN: A Novel Distributed Convolutional-Neural-Networks Based-Approach for Big Remote-Sensing Image Classification. Comput. Electron. Agric. 2021, 182, 106014. [Google Scholar] [CrossRef]
- Xie, J.; Fang, L.; Zhang, B.; Chanussot, J.; Li, S. Super Resolution Guided Deep Network for Land Cover Classification from Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5611812. [Google Scholar] [CrossRef]
- Gao, H.; Guo, J.; Guo, P.; Chen, X. Classification of Very-high-spatial-resolution Aerial Images Based on Multiscale Features with Limited Semantic Information. Remote Sens 2021, 13, 364. [Google Scholar] [CrossRef]
- Jin, B.; Ye, P.; Zhang, X.; Song, W.; Li, S. Object-Oriented Method Combined with Deep Convolutional Neural Networks for Land-Use-Type Classification of Remote Sensing Images. J. Indian Soc. Remote Sens. 2019, 47, 951–965. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, P.; Wu, J.; Li, C. Object-Oriented and Deep-Learning-Based High-Resolution Mapping from Large Remote Sensing Imagery. Can. J. Remote Sens. 2021, 47, 396–412. [Google Scholar] [CrossRef]
- Zhang, P.; Ke, Y.; Zhang, Z.; Wang, M.; Li, P.; Zhang, S. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery. Sensors 2018, 18, 3717. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Li, X.; Wang, H.; Xie, D.; Li, X.; Bai, Y. Land Cover Classification Based on Fused Data from GF-1 and MODIS NDVI Time Series. Remote Sens. 2016, 8, 741. [Google Scholar] [CrossRef]
- Liu, X.; Ji, L.; Zhang, C.; Liu, Y. A Method for Reconstructing NDVI Time-Series Based on Envelope Detection and the Savitzky-Golay Filter. Int. J. Digit. Earth 2022, 15, 553–584. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, T.; Zeng, Y.; Wang, S. An Adaptive-Parameter Pixel Unmixing Method for Mapping Evergreen Forest Fractions Based on Time-Series Ndvi: A Case Study of Southern China. Remote Sens. 2021, 13, 4678. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping Abandoned Farmland in China Using Time Series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Cui, W.; Cai, L.; Chen, M.; Xu, C. Spatiotemporal Evolution Characteristics of Ecosystem Service Values Based on NDVI Changes in Island Cities. IEEE Access 2021, 9, 12922–12931. [Google Scholar] [CrossRef]
- Verhoeven, V.B.; Dedoussi, I.C. Annual Satellite-Based NDVI-Derived Land Cover of Europe for 2001–2019. J. Environ. Manage. 2022, 302, 113917. [Google Scholar] [CrossRef]
- Ang, Y.; Shafri, H.Z.M.; Lee, Y.P.; Abidin, H.; Bakar, S.A.; Hashim, S.J.; Che’Ya, N.N.; Hassan, M.R.; Lim, H.S.; Abdullah, R. A Novel Ensemble Machine Learning and Time Series Approach for Oil Palm Yield Prediction Using Landsat Time Series Imagery Based on NDVI. Geocarto. Int. 2022, 1–32. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Long, X.; Li, X. A Rapid Model (Cov_psdi) for Winter Wheat Mapping in Fallow Rotation Area Using Modis Ndvi Time-Series Satellite Observations: The Case of the Heilonggang Region. Remote Sens. 2021, 13, 4870. [Google Scholar] [CrossRef]
- Kasoro, F.R.; Yan, L.; Zhang, W.; Asante-Badu, B. Spatial and Temporal Changes of Vegetation Cover in China Based on Modis Ndvi. Appl. Ecol. Environ. Res. 2021, 19, 1371–1390. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.; Chen, E.; Zhang, X.; Zhao, L.; Chen, Y.; Wang, Y. A Deep Learning Method for Forest Fine Classification Based on High Resolution Remote Sensing Images: Two-Branch FCN-8s. Linye Kexue/Sci. Silvae Sin. 2020, 56, 48–60. [Google Scholar]
- Wu, Y.; He, K. Group Normalization. Int. J. Comput. Vis. 2020, 128, 742–755. [Google Scholar] [CrossRef]
- Yu, D.; Yang, J.; Zhang, Y.; Yu, S. Additive DenseNet: Dense Connections Based on Simple Addition Operations. J. Intell. Fuzzy Syst. 2021, 40, 5015–5025. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; Volume 1, pp. 448–456. [Google Scholar]
- Yu, L.; Zeng, Z.; Liu, A.; Xie, X.; Wang, H.; Xu, F.; Hong, W. A Lightweight Complex-Valued DeepLabv3+ for Semantic Segmentation of PolSAR Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 930–943. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic Changes in the Value of China’s Ecosystem Services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Li, T.; Cui, Y.; Liu, A. Spatiotemporal Dynamic Analysis of Forest Ecosystem Services Using “Big Data”: A Case Study of Anhui Province, Central-Eastern China. J. Clean. Prod. 2017, 142, 589–599. [Google Scholar] [CrossRef]
Satellite Parameters | GF-1 PMS Multispectral Imagery | GF-2 PMS Multispectral Imagery |
---|---|---|
Product Level | 1A | 1A |
Number of bands | 4 | 4 |
Wavelength(nm) | Blue: 450–520 Green: 520–590 Red: 630–690 NIR: 770–890 | Blue: 450–520 Green: 520–590 Red: 630–690 NIR: 770–890 |
Spatial resolution(m) | 2 | 1 |
Configuration | Version |
---|---|
GPU | NVIDIA GeForce GTX 1080Ti |
RAM | 64.0 GB |
Language | Python 3.6.13 |
Frame | TensorFlow-GPU 1.14.0 |
Image | Methods | DSLN(Ours) | DCCN | DeepLabV3+ | U-Net | SegNet |
---|---|---|---|---|---|---|
All images | mOA | 0.8069 | 0.7769 | 0.6533 | 0.6925 | 0.6652 |
mKappa | 0.7161 | 0.6594 | 0.4555 | 0.5370 | 0.5136 | |
Image1 | OA | 0.8183 | 0.7913 | 0.7187 | 0.5670 | 0.4830 |
Kappa | 0.7358 | 0.6271 | 0.4772 | 0.4056 | 0.2903 | |
Image2 | OA | 0.8481 | 0.8201 | 0.7731 | 0.7959 | 0.7038 |
Kappa | 0.7648 | 0.5979 | 0.4050 | 0.5345 | 0.4506 | |
Image3 | OA | 0.8360 | 0.7895 | 0.7044 | 0.7062 | 0.6378 |
Kappa | 0.6627 | 0.6274 | 0.4797 | 0.5165 | 0.4420 | |
Image4 | OA | 0.8555 | 0.8238 | 0.5480 | 0.6626 | 0.7607 |
Kappa | 0.7913 | 0.7553 | 0.3803 | 0.5370 | 0.6734 | |
Image5 | OA | 0.7506 | 0.7263 | 0.6840 | 0.6876 | 0.5815 |
Kappa | 0.6725 | 0.6580 | 0.5355 | 0.5273 | 0.4075 | |
Image6 | OA | 0.7288 | 0.6984 | 0.6950 | 0.7385 | 0.7394 |
Kappa | 0.6455 | 0.5622 | 0.5266 | 0.5985 | 0.6109 | |
Image7 | OA | 0.8463 | 0.8221 | 0.5786 | 0.7613 | 0.7612 |
Kappa | 0.7604 | 0.7319 | 0.3965 | 0.6394 | 0.6502 | |
Image8 | OA | 0.8374 | 0.8129 | 0.6950 | 0.7385 | 73.94 |
Kappa | 0.7476 | 0.7235 | 0.5266 | 0.5985 | 0.6109 | |
Image9 | OA | 0.8276 | 0.7943 | 0.5892 | 0.7641 | 0.6999 |
Kappa | 0.7378 | 0.7026 | 0.4071 | 0.6554 | 0.5848 | |
Image10 | OA | 0.7204 | 0.6905 | 0.5471 | 0.5035 | 0.5449 |
Kappa | 0.6422 | 0.6079 | 0.4208 | 0.3568 | 0.4150 |
Image | Metrics | Producer’s Accuracy and User’ s Accuracy (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Forest | Shrub | Meadow | Wetland | Farmland | Residential | Road | Industrial | Special | Other | ||
1 | PA | 16.68 | 0.00 | 36.57 | 70.29 | 64.85 | 91.92 | 83.31 | 71.59 | 0.00 | 43.90 |
UA | 56.46 | 0.00 | 36.37 | 86.70 | 56.49 | 89.93 | 74.45 | 57.72 | 0.00 | 68.10 | |
2 | PA | 48.66 | 0.00 | 0.42 | 71.52 | 89.20 | 81.55 | 46.79 | 60.34 | 0.09 | 0.31 |
UA | 55.26 | 0.00 | 0.00 | 60.57 | 91.63 | 66.59 | 57.61 | 59.81 | 0.00 | 0.00 | |
3 | PA | 45.10 | 0.00 | 0.00 | 57.06 | 89.90 | 83.18 | 80.11 | 99.80 | 0.38 | 0.00 |
UA | 30.56 | 0.00 | 0.00 | 76.50 | 83.25 | 86.43 | 76.60 | 73.81 | 0.00 | 0.00 | |
4 | PA | 90.07 | 0.57 | 31.57 | 79.07 | 90.67 | 89.16 | 23.37 | 74.06 | 0.68 | 0.85 |
UA | 83.84 | 0.00 | 64.16 | 78.74 | 86.00 | 84.94 | 40.65 | 67.16 | 0.00 | 0.00 | |
5 | PA | 68.98 | 0.00 | 8.19 | 91.34 | 81.25 | 77.09 | 58.19 | 61.44 | 0.00 | 11.70 |
UA | 66.07 | 0.00 | 12.34 | 85.20 | 72.63 | 73.15 | 56.27 | 80.03 | 0.00 | 25.12 | |
6 | PA | 63.58 | 0.00 | 12.18 | 93.21 | 86.97 | 58.42 | 47.21 | 43.33 | 0.00 | 0.00 |
UA | 55.82 | 0.00 | 70.46 | 93.17 | 52.95 | 1.53 | 41.48 | 59.70 | 0.00 | 33.33 | |
7 | PA | 81.28 | 0.00 | 37.72 | 87.22 | 89.16 | 82.27 | 7.05 | 0.62 | 0.00 | 0.00 |
UA | 74.04 | 0.00 | 65.90 | 76.28 | 91.02 | 73.50 | 29.09 | 8.14 | 0.00 | 0.00 | |
8 | PA | 69.60 | 0.00 | 58.54 | 75.27 | 92.38 | 84.02 | 63.38 | 25.69 | 0.00 | 0.00 |
UA | 67.36 | 0.00 | 77.81 | 75.77 | 84.49 | 89.77 | 58.48 | 90.15 | 0.00 | 0.00 | |
9 | PA | 89.70 | 0.00 | 16.53 | 87.66 | 85.63 | 82.69 | 42.75 | 47.53 | 0.00 | 0.00 |
UA | 79.07 | 0.00 | 56.67 | 56.91 | 88.08 | 78.49 | 57.13 | 72.58 | 0.00 | 0.00 | |
10 | PA | 72.71 | 0.00 | 16.35 | 92.90 | 68.91 | 79.43 | 42.53 | 71.02 | 0.00 | 7.43 |
UA | 64.77 | 0.00 | 42.91 | 86.70 | 62.80 | 42.50 | 41.48 | 79.77 | 0.00 | 19.56 |
Image | Metrics | DSLN (Ours) | 4B+ BN | 4B+ GN | 4B+GN+ Front End | 4B+GN+ Eight Layer | 4B+GN+ Ten Layer |
---|---|---|---|---|---|---|---|
All | mOA | 0.8069 | 0.7054 | 0.7769 | 0.7601 | 0.7593 | 0.7784 |
mKappa | 0.7161 | 0.5882 | 0.6594 | 0.6430 | 0.6428 | 0.6633 | |
1 | OA | 0.8183 | 0.7186 | 0.7913 | 0.7976 | 0.7935 | 0.7917 |
Kappa | 0.7358 | 0.5734 | 0.6271 | 0.6543 | 0.6408 | 0.6295 | |
2 | OA | 0.8481 | 0.8102 | 0.8201 | 0.8323 | 0.8267 | 0.8172 |
Kappa | 0.7648 | 0.5864 | 0.5979 | 0.6216 | 0.6188 | 0.6070 | |
3 | OA | 0.8360 | 0.7269 | 0.7895 | 0.7546 | 0.6948 | 0.7951 |
Kappa | 0.6627 | 0.5776 | 0.6274 | 0.5990 | 0.5277 | 0.6393 | |
4 | OA | 0.8555 | 0.8080 | 0.8238 | 0.8248 | 0.8325 | 0.8276 |
Kappa | 0.7913 | 0.7357 | 0.7553 | 0.7578 | 0.7670 | 0.7594 | |
5 | OA | 0.7506 | 0.6826 | 0.7263 | 0.7220 | 0.7263 | 0.7247 |
Kappa | 0.6725 | 0.5982 | 0.6580 | 0.6513 | 0.6580 | 0.6544 | |
6 | OA | 0.7288 | 0.2998 | 0.6984 | 0.6036 | 0.6214 | 0.7029 |
Kappa | 0.6455 | 0.1945 | 0.5622 | 0.4614 | 0.4766 | 0.5685 | |
7 | OA | 0.8463 | 0.8198 | 0.8221 | 0.8235 | 0.8151 | 0.8229 |
Kappa | 0.7604 | 0.7301 | 0.7319 | 0.7375 | 0.7258 | 0.7365 | |
8 | OA | 0.8374 | 0.8006 | 0.8129 | 0.7767 | 0.8142 | 0.8129 |
Kappa | 0.7476 | 0.6993 | 0.7235 | 0.6563 | 0.7214 | 0.7235 | |
9 | OA | 0.8276 | 0.7617 | 0.7943 | 0.7927 | 0.7731 | 0.7922 |
Kappa | 0.7378 | 0.6633 | 0.7026 | 0.7017 | 0.6766 | 0.6998 | |
10 | OA | 0.7204 | 0.6262 | 0.6905 | 0.6735 | 0.6956 | 0.6965 |
Kappa | 0.6422 | 0.5238 | 0.6079 | 0.5886 | 0.6153 | 0.6155 |
Ecosystem Service | Farmland | Forest | Shrub | Meadow | Wetland | Other |
---|---|---|---|---|---|---|
Food production | 6831.98 | 1423.33 | 2324.77 | 1992.66 | 6215.20 | 0.00 |
Raw material | 1518.22 | 3321.10 | 3415.99 | 2941.55 | 3463.43 | 0.00 |
Water supply | −8065.53 | 1707.99 | 1897.77 | 1613.11 | 51,619.40 | 0.00 |
Gas regulation | 5503.54 | 10,864.74 | 12,050.85 | 10,342.86 | 12,667.63 | 1992.66 |
Climate regulation | 2846.66 | 32,499.35 | 31,882.57 | 27,327.92 | 27,944.69 | 0.00 |
Purify environment | 854.00 | 9536.30 | 10,532.63 | 9014.42 | 43,411.53 | 9963.30 |
Hydrological regulation | 9204.19 | 21,255.05 | 23,390.04 | 19,974.05 | 600,028.06 | 2988.99 |
Soil conservation | 3226.21 | 13,236.96 | 14,707.73 | 12,572.74 | 15,371.95 | 1992.66 |
Nutrient cycle | 948.89 | 996.33 | 1091.22 | 996.33 | 1186.11 | 0.00 |
Biodiversity | 1043.77 | 12,050.85 | 13,331.85 | 11,481.52 | 49,436.96 | 1992.66 |
Aesthetic landscape | 474.44 | 5266.32 | 5883.09 | 5076.54 | 31,408.13 | 996.33 |
Total | 24,386.37 | 112,158.33 | 120,508.52 | 103,333.69 | 842,753.10 | 19,926.61 |
Type | Farmland | Forest | Shrub | Meadow | Wetland | Residential | Other | ||
---|---|---|---|---|---|---|---|---|---|
Year | |||||||||
2015 | Area (km2) | 3788.00 | 20,963.00 | 53.00 | 177.00 | 486.00 | 1736.00 | 29.00 | |
ESV (×108 Ұ) | 92.38 | 2351.17 | 6.39 | 18.29 | 409.58 | - | 0.58 | ||
2020 | Area (km2) | 3088.00 | 21,363.00 | 59.00 | 16.00 | 754.00 | 1978.00 | 33.00 | |
ESV (×108 Ұ) | 75.31 | 2396.04 | 7.11 | 1.65 | 635.44 | - | 0.66 |
Ecosystem Service | 2015 (×108 Ұ) | 2020 (×108 Ұ) | QC | ARC |
---|---|---|---|---|
Food production | 59.21 | 56.22 | −2.99 | −1.01↓ |
Raw material | 77.76 | 78.30 | 0.54 | 0.14↑ |
Water supply | 30.73 | 50.53 | 19.80 | 12.89↑ |
Gas regulation | 257.29 | 258.89 | 1.60 | 0.12↑ |
Climate regulation | 712.17 | 724.60 | 12.43 | 0.35↑ |
Purify environment | 226.69 | 239.57 | 12.89 | 1.14↑ |
Hydrological regulation | 776.91 | 935.35 | 158.44 | 4.08↑ |
Soil conservation | 300.24 | 304.61 | 4.37 | 0.29↑ |
Nutrient cycle | 25.29 | 25.13 | −0.17 | −0.13↓ |
Biodiversity | 283.40 | 298.20 | 14.80 | 1.04↑ |
Aesthetic landscape | 128.70 | 137.77 | 9.07 | 1.41↑ |
Land Cover Type | Coefficient of Service Value | ESV | Effect of Value Coefficient | ||||
---|---|---|---|---|---|---|---|
2015 | 2020 | ||||||
2015 | 2020 | % | CS | % | CS | ||
Farmland | Vc+50% | 2924.57 | 3153.85 | 1.60 | 0.0321 | 1.21 | 0.0242 |
Vc−50% | 2832.20 | 3078.55 | −1.60 | - | −1.21 | - | |
Forest | Vc+50% | 4053.97 | 4314.22 | 40.84 | 0.8168 | 38.45 | 0.7689 |
Vc−50% | 1702.80 | 1918.18 | −40.84 | - | −38.45 | - | |
Shrub | Vc+50% | 2881.58 | 3119.76 | 0.11 | 0.0022 | 0.11 | 0.0023 |
Vc−50% | 2875.19 | 3112.64 | −0.11 | - | −0.11 | - | |
Meadow | Vc+50% | 2887.53 | 3117.03 | 0.32 | 0.0064 | 0.03 | 0.0005 |
Vc−50% | 2869.24 | 3115.37 | −0.32 | - | −0.03 | - | |
Wetland | Vc+50% | 3083.17 | 3433.92 | 7.11 | 0.1423 | 10.20 | 0.2039 |
Vc−50% | 2673.59 | 2798.48 | −7.11 | - | −10.20 | - | |
Other | Vc+50% | 2878.67 | 3116.53 | 0.01 | 0.0002 | 0.01 | 0.0002 |
Vc−50% | 2878.09 | 3115.87 | −0.01 | - | −0.01 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, L.; Yang, H.; Wu, P.; Wang, B.; Pan, C.; Wu, Y. A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network. Remote Sens. 2022, 14, 5455. https://doi.org/10.3390/rs14215455
Zhao J, Wang L, Yang H, Wu P, Wang B, Pan C, Wu Y. A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network. Remote Sensing. 2022; 14(21):5455. https://doi.org/10.3390/rs14215455
Chicago/Turabian StyleZhao, Jingzheng, Liyuan Wang, Hui Yang, Penghai Wu, Biao Wang, Chengrong Pan, and Yanlan Wu. 2022. "A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network" Remote Sensing 14, no. 21: 5455. https://doi.org/10.3390/rs14215455
APA StyleZhao, J., Wang, L., Yang, H., Wu, P., Wang, B., Pan, C., & Wu, Y. (2022). A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network. Remote Sensing, 14(21), 5455. https://doi.org/10.3390/rs14215455