Impact of the Management Scale on the Technical Efficiency of Forest Vegetation Carbon Sequestration: A Case Study of State-Owned Forestry Enterprises in Northeast China
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Variable Selection
2.3. Data Sources and Processing
2.4. Research Methods
2.4.1. Kernel Density Estimation
2.4.2. Land Use Change Transition Matrix
2.4.3. Stochastic Frontier Analysis Model
2.4.4. Panel Threshold Model
3. Analysis of Land Use Change and Carbon Sequestration Spatiotemporal Evolution
3.1. Analysis of Land Use Change
3.2. Analysis of the Spatiotemporal Evolution of Carbon Sequestration
3.2.1. Analysis of Temporal Changes in Carbon Sequestration
3.2.2. Carbon Sequestration Kernel Density Estimation
3.2.3. Analysis of Spatial Changes in Carbon Sequestration
4. Results Analysis
4.1. Technical Efficiency of Forest Vegetation Carbon Sequestration
4.2. Technical Efficiency Change and Heterogeneity Analysis
4.3. Impact of Management Scale on the Technical Efficiency of Forest Vegetation Carbon Sequestration
4.3.1. Threshold Effect Test Results
4.3.2. Analysis of the Threshold Effect of Management Scale
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards Limiting Global Mean Temperature Increase below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Tian, H.; Fu, B.; Yu, H.; Piao, S.; Chen, S.; Li, Y.; Li, X.; Wang, M.; Li, Z.; et al. Biophysical and Economic Constraints on China’s Natural Climate Solutions. Nat. Clim. Chang. 2022, 12, 847–853. [Google Scholar] [CrossRef]
- Bithas, K.; Latinopoulos, D. Managing Tree-Crops for Climate Mitigation. An Economic Evaluation Trading-off Carbon Sequestration with Market Goods. Sustain. Prod. Consum. 2021, 27, 667–678. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Heinrich, V.H.A.; Dalagnol, R.; Cassol, H.L.G.; Rosan, T.M.; de Almeida, C.T.; Silva Junior, C.H.L.; Campanharo, W.A.; House, J.I.; Sitch, S.; Hales, T.C.; et al. Large Carbon Sink Potential of Secondary Forests in the Brazilian Amazon to Mitigate Climate Change. Nat. Commun. 2021, 12, 1785. [Google Scholar] [CrossRef] [PubMed]
- Mitchard, E.T.A. The Tropical Forest Carbon Cycle and Climate Change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Huang, W. Forest Condition Change, Tenure Reform, and Government-Funded Eco-Environmental Programs in Northeast China. For. Policy Econ. 2019, 98, 67–74. [Google Scholar] [CrossRef]
- State Forestry and Grassland Administration Report on Forest Resources Inventory for Key State-owned Forest Regions in Inner Mongolia & Northeast Cnina; China Forestry Publishing House: Beijing, China, 2020; ISBN 978-7-5219-0679-0.
- Han, X.; Frey, G.E.; Geng, Y.; Cubbage, F.W.; Zhang, Z. Reform and Efficiency of State-Owned Forest Enterprises in Northeast China as “Social Firms”. J. For. Econ. 2018, 32, 18–33. [Google Scholar] [CrossRef]
- Liu, S.; Xu, J. Livelihood Mushroomed: Examining Household Level Impacts of Non-Timber Forest Products (NTFPs) under New Management Regime in China’s State Forests. For. Policy Econ. 2019, 98, 44–53. [Google Scholar] [CrossRef]
- Söderbom, M.; Weng, Q. Multi-Product Firms, Product Mix Changes and Upgrading: Evidence from China’s State-Owned Forest Areas. China Econ. Rev. 2012, 23, 801–818. [Google Scholar] [CrossRef]
- State Forestry and Grassland Administration. 2014–2018 China Forest Resources Report; China Forestry Publishing House: Beijing, China, 2019. [Google Scholar]
- Liu, S.; Ding, Z.; Lin, Y.; Yao, S. The Efficiency of Forest Management Investment in Key State-Owned Forest Regions under the Carbon Neutral Target: A Case Study of Heilongjiang Province, China. Forests 2022, 13, 609. [Google Scholar] [CrossRef]
- Moutinho, V. The Effect of Urban Air Pollutants in Germany_ Eco-Efficiency Analysis through Fractional Regression Models Applied after DEA and SFA Efficiency Predictions. Sustain. Cities Soc. 2020, 59, 102204. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, S.; Zhang, S. Are Export Tax Rebates Patronage for Chinese Firms? An Analysis of Productivity. China Econ. Rev. 2022, 75, 101844. [Google Scholar] [CrossRef]
- Gong, B. Agricultural Productivity Convergence in China. China Econ. Rev. 2020, 60, 101423. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Ekholm, T. Optimal Forest Rotation under Carbon Pricing and Forest Damage Risk. For. Policy Econ. 2020, 115, 102131. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jiang, Q.; Engel, B.; Mercado, J.A.V.; Zhang, Z. Analysis on Net Primary Productivity Change of Forests and Its Multi–Level Driving Mechanism—A Case Study in Changbai Mountains in Northeast China. Technol. Forecast. Soc. Chang. 2020, 153, 119939. [Google Scholar] [CrossRef]
- Ye, X.; Chuai, X. Carbon Sinks/Sources’ Spatiotemporal Evolution in China and Its Response to Built-up Land Expansion. J. Environ. Manag. 2022, 321, 115863. [Google Scholar] [CrossRef]
- Zhang, X.; Brandt, M.; Tong, X.; Ciais, P.; Yue, Y.; Xiao, X.; Zhang, W.; Wang, K.; Fensholt, R. A Large but Transient Carbon Sink from Urbanization and Rural Depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, Z. Energy Efficiency Assessment of RCEP Member States: A Three-Stage Slack Based Measurement DEA with Undesirable Outputs. Energy 2022, 253, 124170. [Google Scholar] [CrossRef]
- Kweon, D.; Comeau, P.G. Climate, Site Conditions, and Stand Characteristics Influence Maximum Size-Density Relationships in Korean Red Pine (Pinus Densiflora) and Mongolian Oak (Quercus Mongolica) Stands, South Korea. For. Ecol. Manag. 2021, 502, 119727. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, Z.; Shen, Y.; Li, B.; Yu, K. Research on the impact of forestland management scale on the selection and effect of forestry subsidy policy implementation targets: Based on the survey of two counties and cities in Zhejiang Province. Manag. Rev. 2021, 33, 82–91. [Google Scholar] [CrossRef]
- Li, H.-Z.; Kopsakangas-Savolainen, M.; Xiao, X.-Z.; Tian, Z.-Z.; Yang, X.-Y.; Wang, J.-L. Cost Efficiency of Electric Grid Utilities in China: A Comparison of Estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS. Energy Econ. 2016, 55, 272–283. [Google Scholar] [CrossRef]
- State Forestry and Grassland Administration. China Forestry and Grassland Statistical Yearbook; China Forestry Publishing House: Beijing, China, 2020; ISBN 978-7-5219-1382-8. [Google Scholar]
- Nie, X.; Lu, B.; Chen, Z.; Yang, Y.; Chen, S.; Chen, Z.; Wang, H. Increase or Decrease? Integrating the CLUMondo and InVEST Models to Assess the Impact of the Implementation of the Major Function Oriented Zone Planning on Carbon Storage. Ecol. Indic. 2020, 118, 106708. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-Level CO2 Emissions and Sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhao, H.; Peng, C.; Guo, X.; Lin, Q.; Yang, Q.; Chen, L. The Mangrove Blue Carbon Sink Potential: Evidence from Three Net Primary Production Assessment Methods. For. Ecol. Manag. 2022, 504, 119848. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, X.; Gong, M. How Land Transfer Marketization Influence on Green Total Factor Productivity from the Approach of Industrial Structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Li, T.; Zou, Y.; Liu, Y.; Luo, P.; Xiong, Q.; Lu, H.; Lai, C.; Axmacher, J.C. Mountain Forest Biomass Dynamics and Its Drivers in Southwestern China between 1979 and 2017. Ecol. Indic. 2022, 142, 109289. [Google Scholar] [CrossRef]
- Xu, Y.; Price, M.; Yang, B.; Zhang, K.; Yang, N.; Tang, X.; Ran, J.; Yi, Y.; Wang, B. Have China’s National Forest Reserves Designated since 1990 Conserved Forests Effectively? J. Environ. Manag. 2022, 306, 114485. [Google Scholar] [CrossRef]
- Xu, J.; Tao, R.; Amacher, G.S. An Empirical Analysis of China’s State-Owned Forests. For. Policy Econ. 2004, 6, 379–390. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, H.; Cheng, J.; Jiang, X.; Ji, X.; Zhu, D. Whether Ecological Measures Have Influenced the Environmental Kuznets Curve (EKC)? An Analysis Using Land Footprint in the Weihe River Basin, China. Ecol. Indic. 2022, 139, 108891. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Does Institutional Freedom Matter for Global Forest Carbon Sinks in the Face of Economic Development Disparity? China Econ. Rev. 2021, 65, 101563. [Google Scholar] [CrossRef]
- Lu, C.; Venevsky, S.; Shi, X.; Wang, L.; Wright, J.S.; Wu, C. Econometrics of the Environmental Kuznets Curve: Testing Advancement to Carbon Intensity-Oriented Sustainability for Eight Economic Zones in China. J. Clean. Prod. 2021, 283, 124561. [Google Scholar] [CrossRef]
- He, X.; Lei, X.-D.; Dong, L.-H. How Large Is the Difference in Large-Scale Forest Biomass Estimations Based on New Climate-Modified Stand Biomass Models? Ecol. Indic. 2021, 126, 107569. [Google Scholar] [CrossRef]
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlström, A.; Anav, A.; Canadell, J.G.; Cong, N.; et al. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO2 Trends. Glob. Chang. Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, D.; Zhu, L.; Cherubini, P.; Li, Z.; Zhang, Y.; Wang, X. Species-Specific Indication of 13 Tree Species Growth on Climate Warming in Temperate Forest Community of Northeast China. Ecol. Indic. 2021, 133, 108389. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.; Jiang, H.; Qiao, S.; Guan, M.; Huang, Y.; Gong, R. Widespread Decline in Winds Promoted the Growth of Vegetation. Sci. Total Environ. 2022, 825, 153682. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Peters, G.P.; Manning, A.C.; Boden, T.A.; Tans, P.P.; Houghton, R.A.; et al. Global Carbon Budget 2016. Earth Syst. Sci. Data 2016, 8, 605–649. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Threshold Effects in Non-Dynamic Panels: Estimation, Testing, and Inference. J. Econom. 1999, 24, 345–368. [Google Scholar] [CrossRef]
- Snäll, T.; Triviño, M.; Mair, L.; Bengtsson, J.; Moen, J. High Rates of Short-Term Dynamics of Forest Ecosystem Services. Nat. Sustain. 2021, 4, 951–957. [Google Scholar] [CrossRef]
- Pascual, A.; Giardina, C.P.; Selmants, P.C.; Laramee, L.J.; Asner, G.P. A New Remote Sensing-Based Carbon Sequestration Potential Index (CSPI): A Tool to Support Land Carbon Management. For. Ecol. Manag. 2021, 494, 119343. [Google Scholar] [CrossRef]
- Watts, J.D.; Lawrence, R.L.; Miller, P.R.; Montagne, C. Monitoring of Cropland Practices for Carbon Sequestration Purposes in North Central Montana by Landsat Remote Sensing. Remote Sens. Environ. 2009, 113, 1843–1852. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Drever, C.R.; Cook-Patton, S.C.; Akhter, F.; Badiou, P.H.; Chmura, G.L.; Davidson, S.J.; Desjardins, R.L.; Dyk, A.; Fargione, J.E.; Fellows, M.; et al. Natural Climate Solutions for Canada. Sci. Adv. 2021, 7, eabd6034. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Seidel, D.; Annighöfer, P.; Kreft, H.; Köhler, M.; Zemp, D.C.; Puettmann, K.; Nilus, R.; Babweteera, F.; Willim, K.; et al. Global Patterns and Climatic Controls of Forest Structural Complexity. Nat. Commun. 2021, 12, 519. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S.; et al. Forest Management in Southern China Generates Short Term Extensive Carbon Sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Mirzabaev, A.; Sacande, M.; Motlagh, F.; Shyrokaya, A.; Martucci, A. Economic Efficiency and Targeting of the African Great Green Wall. Nat. Sustain. 2022, 5, 17–25. [Google Scholar] [CrossRef]
- Sharma, B.P.; Cho, S.-H.; Yu, T.E. Designing Cost-Efficient Payments for Forest-Based Carbon Sequestration: An Auction-Based Modeling Approach. For. Policy Econ. 2019, 104, 182–194. [Google Scholar] [CrossRef]
- Mizuta, K.; Grunwald, S.; Phillips, M.A.; Moss, C.B.; Bacon, A.R.; Cropper, W.P. Sensitivity Assessment of Metafrontier Data Envelopment Analysis for Soil Carbon Sequestration Efficiency. Ecol. Indic. 2021, 125, 107602. [Google Scholar] [CrossRef]
- Yin, S.; Gong, Z.; Gu, L.; Deng, Y.; Niu, Y. Driving Forces of the Efficiency of Forest Carbon Sequestration Production: Spatial Panel Data from the National Forest Inventory in China. J. Clean. Prod. 2022, 330, 129776. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D. Assessing the Eco-Efficiency of Complex Forestry Enterprises Using LCA/Time-Series DEA Methodology. Ecol. Indic. 2022, 142, 109166. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S.; Kim, D.G.; Peng, C.; Sweeney, S.; Shangguan, Z. Past and Future Carbon Sequestration Benefits of China’s Grain for Green Program. Glob. Environ. Chang. 2017, 47, 13–20. [Google Scholar] [CrossRef]
- Persson, M.; Moberg, J.; Ostwald, M.; Xu, J. The Chinese Grain for Green Programme: Assessing the Carbon Sequestered via Land Reform. J. Environ. Manag. 2013, 126, 142–146. [Google Scholar] [CrossRef]
- Juutinen, A.; Haeler, E.; Jandl, R.; Kuhlmey, K.; Kurttila, M.; Mäkipää, R.; Pohjanmies, T.; Rosenkranz, L.; Skudnik, M.; Triplat, M.; et al. Common Preferences of European Small-Scale Forest Owners towards Contract-Based Management. For. Policy Econ. 2022, 144, 102839. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Wang, Y.; Ellison, D.; Ashcraft, C.M.; Atallah, S.S.; Jones, K.; Mayer, A.; Altamirano, M.; Yu, P. Multi-Targeted Payments for the Balanced Management of Hydrological and Other Forest Ecosystem Services. For. Ecol. Manag. 2022, 522, 120482. [Google Scholar] [CrossRef]
- Dalmonech, D.; Marano, G.; Amthor, J.S.; Cescatti, A.; Lindner, M.; Trotta, C.; Collalti, A. Feasibility of Enhancing Carbon Sequestration and Stock Capacity in Temperate and Boreal European Forests via Changes to Management Regimes. Agric. For. Meteorol. 2022, 327, 109203. [Google Scholar] [CrossRef]
- Graves, R.A.; Nielsen-Pincus, M.; Haugo, R.D.; Holz, A. Forest Carbon Incentive Programs for Non-Industrial Private Forests in Oregon (USA): Impacts of Program Design on Willingness to Enroll and Landscape-Scale Program Outcomes. For. Policy Econ. 2022, 141, 102778. [Google Scholar] [CrossRef]
- Lodin, I.; Brukas, V. Ideal vs Real Forest Management: Challenges in Promoting Production-Oriented Silvicultural Ideals among Small-Scale Forest Owners in Southern Sweden. Land Use Policy 2021, 100, 104931. [Google Scholar] [CrossRef]
Variable | Code | Unit | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
carbon sequestration | cs | ton | 6,682,722 | 3,759,808 | 940,180.40 | 19,800,000 |
forest management investment | invest | CNY 10 thousand | 11,385.36 | 10,041.77 | 0.00 | 86,843 |
average number of employees | staff | 1 person | 4532.67 | 2303.96 | 684 | 21,466 |
afforestation and tending area | area | hectare | 27,048.88 | 65,630.72 | 2.00 | 993,682 |
forest management scale | scale | hectares/1 person | 101.50 | 113.44 | 13.37 | 984.12 |
total output value of SOFEs | tov | CNY 10 thousand | 52,694.56 | 47,981.64 | 0.00 | 354,364 |
employee wage | wage | CNY 1 thousand | 70,805.75 | 49,372.39 | 2391 | 320,001 |
total production of timber | timber | m3 | 76,802.86 | 80,246.53 | 0.00 | 499,461 |
forest management and protection area | manage | hectare | 233,898.80 | 229,644.10 | 0.00 | 1,337,997 |
precipitation | per | 0.1 mm | 5785.37 | 1339.32 | 2991.92 | 10,986.26 |
temperature | temp | 0.1 °C | 73.16 | 23.36 | 16.99 | 111.63 |
wind speed | wind | 0.1 m/s | 26.06 | 9.07 | 15.76 | 101.67 |
year-round sun duration | sun | hour | 2438.38 | 220.95 | 1973.72 | 3130.38 |
relative humidity | humidity | % | 66.96 | 2.87 | 54 | 76.27 |
Land Type | Cropland (km2) | Forest (km2) | Grassland (km2) | Water (km2) | Barren (km2) | Impervious Land (km2) | Wetland (km2) |
---|---|---|---|---|---|---|---|
Cropland | 14,409.68 | 2546.15 | 499.32 | 65.27 | 0.33 | 368.83 | 0.02 |
Forest | 4920.80 | 284,505.00 | 294.70 | 10.27 | 0.07 | 176.03 | 0.00 |
Grassland | 768.82 | 3526.36 | 2327.35 | 2.12 | 0.97 | 65.17 | 0.09 |
Water | 12.72 | 48.32 | 1.58 | 601.50 | 0.16 | 31.53 | 0.01 |
Barren | 0.10 | 0.13 | 0.12 | 0.20 | 0.34 | 0.67 | 0.00 |
Impervious land | 1.48 | 0.58 | 0.21 | 20.33 | 0.10 | 933.84 | 0.00 |
Wetland | 91.49 | 25.59 | 7.45 | 1.64 | 0.00 | 0.42 | 96.19 |
Changing Trend | 2000–2010 | 2010–2020 | ||
---|---|---|---|---|
Annual Rate of Change | Proportion (%) | Annual Rate of Change | Proportion (%) | |
Obviously Worse | −0.099–−0.020 | 0.12 | −0.099–−0.020 | 0.38 |
Slightly Worse | −0.019–0.000 | 2.44 | −0.019−0.000 | 17.54 |
Basically Stable | 0.001−0.020 | 41.23 | 0.001−0.020 | 55.76 |
Slightly Better | 0.021−0.040 | 38.31 | 0.021−0.040 | 25.36 |
Obviously Better | 0.041−0.894 | 17.89 | 0.041−0.890 | 0.95 |
Variable | Coef. | Std. Err. | p | Variable | Coef. | Std. Err. | p |
---|---|---|---|---|---|---|---|
lninvest | −2.4316 *** | 0.3016 | 0.0000 | lnstaff*t | −0.0517 *** | 0.0070 | 0.0000 |
lnstaff | −3.0656 *** | 0.5765 | 0.0000 | lnafforest*t | 0.0252 *** | 0.0050 | 0.0000 |
lnafforest | −0.7674 *** | 0.2134 | 0.0000 | t2 | −0.0037 *** | 0.0009 | 0.0000 |
lninvest2 | −0.0234 | 0.0244 | 0.3370 | _cons | 41.7678 *** | 2.8347 | 0.0000 |
lnstaff2 | 0.0040 | 0.0408 | 0.9210 | usigmas | |||
lnafforest2 | 0.0047 | 0.0034 | 0.1710 | t | −0.0926 * | 0.0550 | 0.0920 |
lninvest*lnstaff | 0.3339 *** | 0.0434 | 0.0000 | _cons | −1.3528 *** | 0.3801 | 0.0000 |
lninvest*lnafforest | −0.0004 | 0.0245 | 0.9880 | vsigmas | |||
lnstaff*lnafforest | 0.0614 ** | 0.0271 | 0.0240 | _cons | −1.4914 *** | 0.0974 | 0.0000 |
lninvest*t | 0.0264 *** | 0.0089 | 0.0030 | obs | 1827 |
Threshold Type | Threshold Level | F Value | p-Value | BS Times | Threshold | Confidence Interval |
---|---|---|---|---|---|---|
Single threshold | (pfgc1) | 197.85 *** | 0.0000 | 300 | 23.2777 | [23.1136, 23.4472] |
Double threshold | (pfgc1) | 105.32 *** | 0.0000 | 300 | 23.2777 | [23.0075, 23.4472] |
(pfgc2) | 300 | 35.9804 | [35.2174, 36.3699] |
Variable | Model (1) | Model (2) | Model (3) | |||
---|---|---|---|---|---|---|
Coef. | Std.Err | Coef. | Std.Err | Coef. | Std.Err | |
lnscale | 0.0474 *** | 0.0073 | ||||
lnscale (scale < 23.2777) | −0.0102 ** | 0.0043 | −0.0096 ** | 0.0044 | ||
lnscale (23.2777 < scale < 35.9804) | 0.0078 ** | 0.0039 | 0.0084 ** | 0.0039 | ||
lnscale (35.9804 < scale) | 0.0175 *** | 0.0033 | 0.0180 *** | 0.0033 | ||
lnmanage | −0.0002 | 0.0002 | ||||
lntov | 0.0192 *** | 0.0033 | 0.0190 *** | 0.0013 | 0.0190 *** | 0.0013 |
lnwage | 0.0258 *** | 0.0033 | 0.0284 *** | 0.0021 | 0.0287 *** | 0.0021 |
lntimber | −0.0018 *** | 0.0004 | −0.0017 *** | 0.0002 | −0.0017 *** | 0.0002 |
lnafforest | 0.0128 *** | 0.0047 | 0.0111 *** | 0.0028 | 0.0116 *** | 0.0029 |
lnafforest2 | −0.0011 *** | 0.0003 | −0.0009 *** | 0.0002 | −0.0009 *** | 0.0002 |
lnper | 0.0397 *** | 0.0062 | 0.0451 *** | 0.0052 | 0.0433 *** | 0.0054 |
lntemp | −0.0265 *** | 0.0055 | −0.0234 ** | 0.0095 | −0.0224 ** | 0.0096 |
lnwind | 0.0116 *** | 0.0024 | 0.0108 *** | 0.0035 | 0.0106 *** | 0.0035 |
lnsun | 0.0668 *** | 0.0110 | 0.0831 *** | 0.0111 | 0.0750 *** | 0.0131 |
lnhumidity | −0.0100 | 0.0301 | −0.0388 | 0.0237 | −0.0366 | 0.0238 |
R-sq (overall) | 0.7249 | 0.7159 | 0.7165 | |||
_cons | −0.6588 *** | 0.2193 | −0.6107 *** | 0.1493 | −0.5503 *** | 0.1576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, X.; Ding, Z.; Yao, S. Impact of the Management Scale on the Technical Efficiency of Forest Vegetation Carbon Sequestration: A Case Study of State-Owned Forestry Enterprises in Northeast China. Remote Sens. 2022, 14, 5528. https://doi.org/10.3390/rs14215528
Liu S, Liu X, Ding Z, Yao S. Impact of the Management Scale on the Technical Efficiency of Forest Vegetation Carbon Sequestration: A Case Study of State-Owned Forestry Enterprises in Northeast China. Remote Sensing. 2022; 14(21):5528. https://doi.org/10.3390/rs14215528
Chicago/Turabian StyleLiu, Shuohua, Xiefei Liu, Zhenmin Ding, and Shunbo Yao. 2022. "Impact of the Management Scale on the Technical Efficiency of Forest Vegetation Carbon Sequestration: A Case Study of State-Owned Forestry Enterprises in Northeast China" Remote Sensing 14, no. 21: 5528. https://doi.org/10.3390/rs14215528