On the Quality Control of HY-2 Scatterometer High Winds
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Overview of the MLE-Based QC and the Sensitivity of the QC Indicators to Rain
3.1. Statistical Analysis of the Operational MLE-Based QC
3.2. Sensitivity of HSCAT Variables to Rain
- (1)
- (2)
- The current QC threshold is not optimal, as it rejects too many high winds without rain contamination (see the dark blue area on the left side of the dashed curve).
- (3)
- (4)
- The MLEm of RapidScat is more sensitive to rain than that of HSCAT, particularly for high wind conditions. In other words, large MLEm values of HSCAT-B are less likely to be induced by rain compared to those of RapidScat. The main reasons for this could be: first, that HSCATs observe the Earth’s surface at lower incidence angles (VV-48.5° and HH-41.5°) than RapidScat (VV-56° and HH-49°), such that their backscatters are less strongly affected by rain [19]; second, that HSCAT wind retrieval uses radar footprints, whereas RapidScat uses high resolution measurements, namely, slices [21].
4. Improved QC with MLEm
4.1. Development of the MLEm QC Threshold
- (1)
- Similarly to the previous pencil-beam scatterometers, it is challenging to obtain a wind QC for the outer-swath WVCs, due to the lack of observations by the HH beam. As such, on the left side of the dashed curves, the false alarm rate of rainy WVCs is higher than those of the sweet and inner swaths.
- (2)
- The QC threshold is actually chosen by compromising the false alarm of rain in the QC rejected category and the missing alarm of rain in the QC accepted data. The wind retrieval bias induced by rain not only depends on the sea-surface wind condition, but also depends on the radar incidence angles [19]. Consequently, the rejection rate should be carefully adjusted for different sensors at various wind speed conditions.
4.2. Validation of New QC
- (1)
- Reject the data whose MLEm values are higher than the QC threshold, i.e., on the left side of the red-dashed curves (Figure 5);
- (2)
- Reject the data with w < 8 m/s in the category “QC2”.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, X.; Lin, M.; Liu, J.; Zhang, Y.; Xie, X.; Peng, H.; Zhou, W. The HY-2 satellite and its preliminary assessment. Int. J. Digit. Earth 2012, 5, 266–281. [Google Scholar] [CrossRef]
- Wang, Z.; Stoffelen, A.; Zou, J.; Lin, W.; Verhoef, A.; Zhang, Y.; He, Y.; Lin, M. Validation of New Sea Surface Wind Products from Scatterometers Onboard the HY-2B and MetOp-C Satellites. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4387–4394. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, J.; Stoffelen, A.; Lin, W.; Verhoef, A.; Li, X.; He, Y.; Zhang, Y.; Lin, M. Scatterometer Sea Surface Wind Product Validation for HY-2C. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6156–6164. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, J.; Zhang, Y.; Stoffelen, A.; Lin, W.; He, Y.; Feng, Q.; Zhang, Y.; Mu, B.; Lin, M. Intercalibration of backscatter measurements among Ku-band scatterometers onboard the Chinese HY-2 satellite constellation. Remote Sens. 2021, 13, 4783. [Google Scholar] [CrossRef]
- Stiles, B.W.; Yueh, S.H. Impact of rain on spaceborne ku-band wind scatterometer data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1973–1983. [Google Scholar] [CrossRef]
- Lin, W.; Portabella, M. Toward an Improved Wind Quality Control for RapidScat. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3922–3930. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Varma, A.K.; Shah, S.; Gohil, B.S.; Pal, P.K. Rain identification and measurement using Oceansat-II scatterometer observations. Remote Sens. Environ. 2014, 142, 20–32. [Google Scholar] [CrossRef]
- Verhoef, A.; Vogelzang, J.; Verspeek, J.; Stoffelen, A. PenWP User Manual and Reference Guide; NWPSAF-KN-UD-009, Version 2.2; EUMETSAT NWP SAF: Darmstadt, Germany, 2018. [Google Scholar]
- Xu, X.; Stoffelen, A. Improved Rain Screening for Ku-Band Wind Scatterometry. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2494–2503. [Google Scholar] [CrossRef]
- Peng, Y.; Xie, X.; Lin, M.; Ran, L.; Yuan, F.; Zhou, Y.; Tang, L. A study of sea surface rain identification based on HY-2A scatterometer. Remote Sens. 2021, 13, 3475. [Google Scholar] [CrossRef]
- Verhoef, A.; Stoffelen, A. Advances in Ku-Band Scatterometer Quality Control; SAF/OSI/CDOP3/KNMI/SCI/TN/404, Version 1.1; EUMETSAT OSI SAF: Darmstadt, Germany, 2021. [Google Scholar]
- Lin, W.; Portabella, M.; Stoffelen, A.; Verhoef, A.; Turiel, A. ASCAT wind quality control near rain. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4165–4177. [Google Scholar] [CrossRef]
- Lin, W.; Portabella, M.; Stoffelen, A.; Turiel, A.; Verhoef, A. Rain identification in ASCAT winds using singularity analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1519–1523. [Google Scholar] [CrossRef] [Green Version]
- Huddleston, J.N.; Stiles, B.W. A multi-dimensional histogram technique for flagging rain contamination on QuikSCAT. In Proceedings of the IEEE International on Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; Volume 3, pp. 1232–1234. [Google Scholar]
- May, J.C.; Bourassa, M.A. Quantifying variance due to temporal and spatial difference between ship and satellite winds. J. Geophys. Res. Oceans 2011, 116, C08013. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; Verhoef, A. ASCAT wind quality under high subcell wind variability conditions. J. Geophys. Res. Oceans 2015, 120, 5804–5819. [Google Scholar] [CrossRef] [Green Version]
- KNMI Scatterometer Team. NSCAT-4 Geophysical Model Function. Available online: https://scatterometer.knmi.nl/nscat_gmf/ (accessed on 5 September 2022).
- Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera-Poy, J.; Vogelzang, J. Coastal and Rain-induced Wind Variability Depecited by Scatterometers. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 22–27 April 2012; Available online: https://meetingorganizer.copernicus.org/EGU2012/EGU2012-9539.pdf (accessed on 16 October 2022).
- Zhao, X.; Lin, W.; Portabella, M.; Wang, Z.; He, Y. Effects on rain on CFOSAT scatterometer measurements. Remote Sens. Environ. 2022, 274, 113015. [Google Scholar] [CrossRef]
- Portabella, M.; Stoffelen, A. Rain detection and quality control of Seawinds. J. Atmos. Ocean. Technol. 2001, 18, 1171. [Google Scholar] [CrossRef]
- Spencer, M.W.; Wu, C.; Long, D.G. Improved resolution backscatter measurements with the SeaWinds pencil-beam scatterometer. IEEE Trans. Geosci. Remote Sens. 2000, 38, 89–104. [Google Scholar] [CrossRef]
Name | Inner Swath | Sweet Swath | Outer Swath |
---|---|---|---|
CTD (km) | ≤200 km | 200–700 km | ≥700 km |
WVC column number | 30–47 | 10–29 & 48–67 | 1–9 & 68–76 |
Statistical Scores | Speed (m/s) | Direction (°) | u (m/s) | v (m/s) | Rejection Ratio (%) | |
---|---|---|---|---|---|---|
QC accepted data | HSCAT-B | 1.13 (0.09) | 10.6 (0.5) | 1.23 (0.10) | 1.20 (0.02) | - |
HSCAT-C | 1.07 (0.11) | 10.9 (0.7) | 1.23 (0.13) | 1.23 (0.01) | ||
HSCAT-D | 1.08 (0.16) | 10.4 (0.4) | 1.19 (0.16) | 1.21 (0.03) | ||
QC rejected data | HSCAT-B | 2.37 (1.30) | 17.7 (−0.1) | 2.56 (0.40) | 2.30 (0.07) | 5.74 |
HSCAT-C | 2.22 (1.16) | 17.3 (−0.1) | 2.40 (0.36) | 2.24 (0.05) | 5.85 | |
HSCAT-D | 2.03 (0.93) | 14.4 (−0.1) | 2.10 (0.30) | 1.98 (0.05) | 9.80 |
Statistical Scores | Speed (m/s) | Direction (°) | u (m/s) | v (m/s) | Rejection Ratio (%) | |
---|---|---|---|---|---|---|
QC accepted data | HSCAT-B | 0.92 (0.13) | 13.6 (1.4) | 1.47 (−0.07) | 1.39 (−0.10) | - |
HSCAT-C | 1.10 (0.27) | 14.8 (−0.1) | 1.68 (−0.08) | 1.68 (−0.08) | ||
HSCAT-D | 1.02 (0.15) | 13.8 (−1.0) | 1.49 (−0.01) | 1.56 (−0.07) | ||
QC rejected data | HSCAT-B | 2.36 (0.89) | 31.9 (2.3) | 3.80 (0.20) | 3.29 (−0.32) | 7.49 |
HSCAT-C | 2.04 (0.63) | 25.9 (−1.9) | 3.47 (−0.04) | 3.11 (−0.56) | 7.95 | |
HSCAT-D | 2.00 (0.79) | 24.7 (−0.8) | 2.93 (−0.27) | 3.44 (−0.34) | 11.00 |
Statistical Scores | Speed (m/s) | Direction (°) | u (m/s) | v (m/s) | Rejection Ratio (%) | |
---|---|---|---|---|---|---|
QC accepted data | HSCAT-B | 1.13 (0.09) | 10.6 (0.5) | 1.25 (0.08) | 1.22 (0.02) | - |
HSCAT-C | 1.07 (0.11) | 10.8 (0.7) | 1.26 (0.11) | 1.25 (0.01) | ||
HSCAT-D | 1.09 (0.17) | 10.3 (0.4) | 1.22 (0.13) | 1.23 (0.03) | ||
QC rejected data | HSCAT-B | 2.40 (1.30) | 18.8 (−0.1) | 2.54 (0.42) | 2.28 (0.05) | 5.61 |
HSCAT-C | 2.26 (1.17) | 18.6 (−0.1) | 2.42 (0.40) | 2.24 (0.03) | 5.40 | |
HSCAT-D | 1.93 (0.77) | 14.3 (0.0) | 1.94 (0.27) | 1.82 (0.04) | 11.6 |
Statistical Scores | Speed (m/s) | Direction (°) | u (m/s) | v (m/s) | Rejection Ratio (%) | |
---|---|---|---|---|---|---|
QC accepted data | HSCAT-B | 0.93 (0.14) | 13.6 (1.4) | 1.47 (−0.07) | 1.39 (−0.10) | - |
HSCAT-C | 1.11 (0.28) | 14.8 (−0.1) | 1.68 (−0.08) | 1.68 (−0.08) | ||
HSCAT-D | 1.03 (0.17) | 13.8 (−1.0) | 1.49 (−0.01) | 1.56 (−0.07) | ||
QC rejected data | HSCAT-B | 2.34 (0.86) | 32.6 (2.2) | 3.47 (0.27) | 3.09 (−0.27) | 7.47 |
HSCAT-C | 2.14 (0.60) | 27.0 (−1.9) | 3.10 (−0.13) | 3.04 (−0.54) | 6.38 | |
HSCAT-D | 1.94 (0.65) | 24.6 (−1.1) | 2.70 (−0.38) | 3.19 (−0.32) | 11.80 |
Statistical Scores | Speed (m/s) | Direction (°) | u (m/s) | v (m/s) | Number | |
---|---|---|---|---|---|---|
Operational QC | HSCAT-B | 1.53 (−0.39) | 20.8 (−0.6) | 5.73 (−2.60) | 5.77 (−0.13) | 60 |
HSCAT-C | 1.45 (−0.41) | 12.1 (−0.8) | 3.46 (−0.54) | 3.16 (−1.20) | 64 | |
HSCAT-D | 1.44 (−1.29) | 9.6 (−0.1) | 1.86 (0.62) | 3.23 (−2.02) | 26 | |
New MLEm-based QC | HSCAT-B | 1.51 (−0.39) | 20.5 (−0.3) | 5.93 (−2.65) | 5.01 (−0.30) | 95 |
HSCAT-C | 1.57 (−0.32) | 16.1 (−0.9) | 4.98 (−1.10) | 3.47 (−0.66) | 103 | |
HSCAT-D | 1.62 (−0.73) | 9.3 (0.3) | 1.72 (0.42) | 3.37 (−1.61) | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, S.; Lin, W.; Zhang, Y.; Jia, Y. On the Quality Control of HY-2 Scatterometer High Winds. Remote Sens. 2022, 14, 5565. https://doi.org/10.3390/rs14215565
Lang S, Lin W, Zhang Y, Jia Y. On the Quality Control of HY-2 Scatterometer High Winds. Remote Sensing. 2022; 14(21):5565. https://doi.org/10.3390/rs14215565
Chicago/Turabian StyleLang, Shuyan, Wenming Lin, Yi Zhang, and Yongjun Jia. 2022. "On the Quality Control of HY-2 Scatterometer High Winds" Remote Sensing 14, no. 21: 5565. https://doi.org/10.3390/rs14215565
APA StyleLang, S., Lin, W., Zhang, Y., & Jia, Y. (2022). On the Quality Control of HY-2 Scatterometer High Winds. Remote Sensing, 14(21), 5565. https://doi.org/10.3390/rs14215565