Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution
Abstract
:1. Introduction
2. Theory of Unwrapping Based on WDF
3. Phase Unwrapping by Imaging Processing
3.1. Spherical Aberration Data
3.2. Turbulence Phase Data
4. Phase Unwrapping by Shack-Hartmann Sensor
4.1. Simulated Situation
4.2. Experimental Situation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghiglia, D.C.; Pritt, M. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software; A Wiley Interscience Publication: Hoboken, NJ, USA, 1998. [Google Scholar]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase unwrapping in InSAR: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, H.; Lan, Y.; Xing, M. Artificial Intelligence In Interferometric Synthetic Aperture Radar Phase Unwrapping: A Review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 2–20. [Google Scholar] [CrossRef]
- Liu, Z.M.; Zhang, J.F.; Luo, Y.; Yong-Sheng, L.I.; Liu, X.G. Experimental and Comparative Study of InSAR Phase Unwrapping Algorithms. Remote Sens. Inf. 2012, 02, 71–76. [Google Scholar]
- Wei, Z.; Jin, Y. InSAR Phase Unwrapping Algorithm Based on Branch-cut Optimization. Remote Sens. Technol. Appl. 2011, 22, 200–203. [Google Scholar]
- Itoh, K. Analysis of the phase unwrapping algorithm. Appl. Opt. 1982, 21, 2470. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Phase Retrieval Algorithms: A Comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [Green Version]
- Dardikman, G.; Singh, G.; Shaked, N.T. Four dimensional phase unwrapping of dynamic objects in digital holography. Opt. Express 2018, 26, 3772. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xiao, W.; Pan, F.; Rong, L. Phase unwrapping method based on multiple recording distances for digital holographic microscopy. Opt. Commun.J. Devoted Rapid Publ. Short Contrib. Field Opt. Interact. Light Matter 2015, 346, 38–42. [Google Scholar] [CrossRef]
- Palacios, F.; Gonçalves, E.; Ricardo, J.; Valin, J.L. Adaptive filter to improve the performance of phase-unwrapping in digital holography. Opt. Commun. 2004, 238, 245–251. [Google Scholar] [CrossRef]
- Nguyen, H.; Nguyen, D.; Wang, Z.; Kieu, H.; Le, M. Real-time, high-accuracy 3D imaging and shape measurement. Appl. Opt. 2015, 54, A9–A17. [Google Scholar] [CrossRef]
- Zheng, D.; Da, F. A novel algorithm for branch cut phase unwrapping. Opt. Lasers Eng. 2011, 49, 609–617. [Google Scholar] [CrossRef]
- De Souza, J.C.; Oliveira, M.E.; Dos Santos, P.A.M. Branch-cut algorithm for optical phase unwrapping. Opt. Lett. 2015, 40, 3456–3459. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Sotomaru, T.; Miyamoto, Y.; Takeda, M. Two-dimensional phase unwrapping by direct elimination of rotational vector fields from phase gradients obtained by heterodyne techniques. In Proceedings of the Volume 3478, Laser Interferometry IX: Techniques and Analysis, San Diego, CA, USA, 19–24 July 1998. [Google Scholar] [CrossRef]
- Arevalillo-Herraez, M.; Villatoro, F.R.; Gdeisat, M.A. A robust and simple measure for quality guided 2D phase unwrapping algorithms. IEEE Trans. Image Process. 2016, 25, 2601–2609. [Google Scholar] [CrossRef] [PubMed]
- Herráez, M.; Burton, D.R.; Lalor, M.J.; Gdeisat, M.A. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt. 2002, 41, 7437–7444. [Google Scholar] [CrossRef] [PubMed]
- Volkov, V.V.; Zhu, Y. Deterministic phase unwrapping in the presence of noise. Opt. Lett. 2003, 28, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Cheng, Y.; Xia, L.; Liu, F. A new particle swarm optimization-based method for phase unwrapping of MRI data. Comput. Math. Methods Med. 2012, 2012, 475745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkinson, M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn. Reson. Med. 2003, 49, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lan, Y. Robust Two-Dimensional Phase Unwrapping for Multibaseline SAR Interferograms: A Two-Stage Programming Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5217–5225. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Bao, Z. A Cluster-Analysis-Based Efficient Multibaseline Phase-Unwrapping Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 478–487. [Google Scholar] [CrossRef]
- Xie, X.M.; Ying-Hui, L.I. Discussion on multi-baseline phase unwrapping algorithm for SAR interferometry. Sci. Surv. Mapp. 2015, 40, 43–47. [Google Scholar]
- Martinez-Espla, J.J.; Martinez-Marin, T.; Lopez-Sanchez, J.M. A Particle Filter Approach for InSAR Phase Filtering and Unwrapping. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1197–1211. [Google Scholar] [CrossRef]
- Xie, X. Iterated unscented Kalman filter for phase unwrapping of interferometric fringes. Opt. Express 2016, 24, 18872–18897. [Google Scholar] [CrossRef]
- Lee, J.S.; Papathanassiou, K.P. A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1456–1465. [Google Scholar]
- Cai, B.; Liang, D.; Zhen, D. A New Adaptive Multiresolution Noise-Filtering Approach for SAR Interferometric Phase Images. IEEE Geosci. Remote Sens. Lett. 2008, 5, 266–270. [Google Scholar]
- Hussain, Z.M.; Boashash, B. Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions. Signal Process. IEEE Trans. 2002, 50, 1866–1876. [Google Scholar] [CrossRef]
- Trouvé, E.; Caramma, M.; Maître, H. Fringe detection in noisy complex interferograms. Appl. Opt. 1996, 35, 3799–3806. [Google Scholar] [CrossRef]
- Trouve, E.; Nicolas, J.M.; Maitre, H. Improving phase unwrapping techniques by the use of local frequency estimates. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1963–1972. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xie, W.; Ma, H.; Chu, J.; Chen, F. Wavefront measurement method based on improved light field camera. Results Phys. 2020, 17, 103007. [Google Scholar] [CrossRef]
- Akondi, V.; Falldorf, C.; Marcos, S.; Vohnsen, B. Phase unwrapping with a virtual Hartmann-Shack wavefront sensor. Opt. Express 2015, 23, 25425–25439. [Google Scholar] [CrossRef]
- Dayton, D.; Pierson, B.; Spielbusch, B.; Gonglewski, J. Atmospheric structure function measurements with a Shack–Hartmann wave-front sensor. Opt. Lett. 1992, 17, 1737–1739. [Google Scholar] [CrossRef]
- Zhang, Z.; Levoy, M. Wigner distributions and how they relate to the light field. In Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), San Francisco, CA, USA, 16–17 April 2009. [Google Scholar]
- Pritt, M.D.; Shipman, J.S. Least-squares two-dimensional phase unwrapping using FFT’s. IEEE Trans. Geosci. Remote Sens. 1994, 32, 706–708. [Google Scholar] [CrossRef]
- Dai, G.M. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. J. Opt. Soc. Am. A 1996, 13, 1218–1225. [Google Scholar] [CrossRef]
- Bastiaans, M.J. Application of the Wigner distribution function in optics. Wigner Distrib.—Theory Appl. Signal Process. 1997, 375, 426. [Google Scholar]
- Claasm, T.; Mecklenbrauker, W. The Wigner distribution-a tool for time-frequency signal analysis, part II: Discrete-time signals. Philips J. Res. 1980, 35, 276–300. [Google Scholar]
- Kazhdan, M. Poisson surface reconstruction. In Proceedings of the Eurographics Symposium on Geometry Processing, Sardinia, Italy, 26–28 June 2006. [Google Scholar]
- Martin, W.; Flandrin, P. Spectral analysis of nonstationary processes. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 1461–1470. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, A.M.; Gordeyev, S.V. Shack-Hartmann wavefront sensor image analysis: A comparison of centroiding methods and image-processing techniques. Opt. Eng. 2013, 52, 071413. [Google Scholar] [CrossRef]
Range of Noise | Noised Image | Instantaneous Frequency Estimation | Fast Frequency Estimation | Our Method |
---|---|---|---|---|
0.7π | 0.404 | 0.0020 | 0.0020 | 0.0021 |
1.0π | 0.824 | 0.0037 | 0.0064 | 0.0042 |
1.4π | 1.606 | 0.025 | 0.07 | 0.014 |
Range of Noise | Noised Image | Instantaneous Frequency Estimation | Fast Frequency Estimation | Our Method |
---|---|---|---|---|
0.7π | 0.40 | 0.22 | 0.06 | 0.08 |
1.2π | 1.18 | 0.21 | 0.15 | 0.08 |
1.4π | 1.64 | 0.66 | 0.93 | 0.08 |
Zernike Coefficient | Initial Data | Without Denoising | Edge Threshold Denoising | Our Method | ||||
---|---|---|---|---|---|---|---|---|
MSE | STR | MSE | STR | MSE | STR | MSE | STR | |
5th Zernike Order | 0.82 | 0.40 | 2.14 | 0.07 | 0.83 | 0.37 | 0.27 | 0.82 |
7th Zernike Order | 0.82 | 0.40 | 3.22 | 0.16 | 0.60 | 0.48 | 0.30 | 0.73 |
8–10th Zernike Order | 0.82 | 0.40 | 2.43 | 0.11 | 0.34 | 0.67 | 0.17 | 0.83 |
6–10th Zernike Order | 0.82 | 0.40 | 2.61 | 0.04 | 0.29 | 0.74 | 0.16 | 0.82 |
Coefficient | Without Denoising | Edge Threshold Denoising | Our Method | |||
---|---|---|---|---|---|---|
MSE | STR | MSE | STR | MSE | STR | |
5th Order | 2.06 | 0.08 | 0.13 | 0.84 | 0.08 | 0.90 |
7th Order | 2.59 | 0.10 | 0.10 | 0.88 | 0.10 | 0.89 |
8th–10th Order | 2.94 | 0.13 | 0.22 | 0.77 | 0.19 | 0.80 |
6th–10th Order | 2.83 | 0.04 | 0.24 | 0.74 | 0.18 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, J.; Liu, X.; Ma, H.; Yu, X.; Ren, G. Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution. Remote Sens. 2022, 14, 5603. https://doi.org/10.3390/rs14215603
Chu J, Liu X, Ma H, Yu X, Ren G. Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution. Remote Sensing. 2022; 14(21):5603. https://doi.org/10.3390/rs14215603
Chicago/Turabian StyleChu, Junqiu, Xingling Liu, Haotong Ma, Xuegang Yu, and Ge Ren. 2022. "Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution" Remote Sensing 14, no. 21: 5603. https://doi.org/10.3390/rs14215603
APA StyleChu, J., Liu, X., Ma, H., Yu, X., & Ren, G. (2022). Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution. Remote Sensing, 14(21), 5603. https://doi.org/10.3390/rs14215603