Assessing Changes in Boreal Vegetation of Kola Peninsula via Large-Scale Land Cover Classification between 1985 and 2021
Abstract
:1. Introduction
- Whether there is a trend to the phytomass growth over the time period of the study attributable to rising temperature and precipitation levels;
- Whether there is a large-scale recovery of the damaged vegetation following the reduction in industrial activity towards the end of the 1990s.
2. Environment and Human Activity on the Kola Peninsula
2.1. Seasonal and Year-on-Year Trends in Air Temperature and Precipitation
2.2. Industrial Impact on Vegetation of the Kola peninsula
3. Data and Methods
3.1. Landsat Product Entities
3.2. Data Processing
- 1
- Defining the set of input variables for the classifier and output land cover classes;
- 2
- Extracting the training and testing sets of input variables from atmospherically corrected Landsat images selected for training/testing;
- 3
- Training the TensorFlow-based classifier and assessing its accuracy using the testing set;
- 4
- Performing the full-image classification of Landsat images;
- 5
- Filtering and subsampling of resulting classification images to the area of interest;
- 6
- Mapping land cover classification and computing statistics;
- 7
- Computing change maps between pairs of years as well as contingency tables for class changes between years.
3.2.1. Class Definitions, Input Variables and Training Data
3.2.2. TensorFlow Classification
3.2.3. Trimming and Filtering of Classification Images
3.2.4. Computing Change Maps
4. Results and Discussions
4.1. Land Cover Change Detection
4.2. Recovery of Damaged Vegetation
4.3. Metodology Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-Makers; Arctic Monitoring and Assessment Programme (AMAP): Tromsø, Norway, 2021. [Google Scholar]
- Global Footprint Network. Open Platform Data. 2022. Available online: https://data.footprintnetwork.org/#/countryTrends?cn=5001&type=BCtot,EFCtot (accessed on 22 June 2022).
- Watson, J.E.M.; Venter, O.; Lee, J.R.; Jones, K.R.; Robinson, J.; Possingham, H.P.; Allan, J. Protect the Last of the Wild. Nature 2018, 563, 27–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofgaard, A. Arctic Climate Feedback Mechanisms. In Proceedings of the Workshop at Norwegian Polar Institute, Tromsø, Norway, 17–19 November 2003; Rapportserie Norsk Polarinstitutt: Tromsø, Norway, 2004; Volume 124, Chapter Feedbacks between Northern Terrestrial Systems And Climate. pp. 23–25. [Google Scholar]
- ACIA. Arctic Climate Impact Assessment, 1st ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bonan, G.B.; Pollard, D.; Thompson, S.L. Effects of Boreal Forest Vegetation on Global Climate. Nature 1992, 359, 716–718. [Google Scholar] [CrossRef]
- UNECE, 2021. Boreal Forests in the UNECE Region. 2022. Available online: https://unece.org/forests/boreal-forests (accessed on 26 December 2021).
- Pimm, S.L. The Complexity and Stability of Ecosystems. Nature 1984, 307, 321–326. [Google Scholar] [CrossRef]
- Kruchkov, V.; Syroid, N. Monitoring of Natural Environmental on Kola North; Chapter Soil and Botanic Monitoring in the Central Part of the Kola Peninsula; Kola Branch of the Academy of Sciences USSR: Apatity, Russia, 1984; pp. 4–15. (In Russian) [Google Scholar]
- Moiseenko, T.I.; Dauvalter, V.A.; Lukin, A.A.; Kudryavtceva, L.P.; Ilyashuk, B.P.; Ilyashuk, L.I.; Sandimirov, S.S.; Kagan, L.Y.; Vandish, O.M.; Sharova, Y.N.; et al. Antropogenic Modifications of the Lake Imandra’s Ecosystems; Nauka: Moscow, Russia, 2002. (In Russian) [Google Scholar]
- Tømmervik, H.; Høgda, K.A.; Solheim, I. Monitoring Vegetation Changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) Using Multitemporal Landsat MSS/TM Data. Remote. Sens. Environ. 2003, 85, 370–388. [Google Scholar] [CrossRef]
- Krasovskaya, T.; Evseev, A. Rational Environmental Management on the Kola Peninsula; Moscow Forestry University Press: Mytichi, Russia, 1990. (In Russian) [Google Scholar]
- Golubeva, E. Methods for Researching States of Ecosystems Destroyed by Human; Lomonosov Moscow State University: Moscow, Russia, 1999. (In Russian) [Google Scholar]
- Kulikov, V. Where is the Southern Boundary of Fennoscandia? Bull. Geol. Soc. Finl. 1995, 67, 73–75. [Google Scholar] [CrossRef]
- Forest Plan of Murmansk Region, 1 January 2019–31 December 2028. 2018. Available online: https://openregion.gov-murman.ru/upload/iblock/786/Lesnoy-plan-Murmanskoy-oblasti_2019.pdf (accessed on 31 March 2022). (In Russian)
- Ramenskaya, M. Analysis of Flora in the Murmansk Region and Karelia; Nauka: Leningrad, Russia, 1983. (In Russian) [Google Scholar]
- Doncheva, A.V. Landscape in Industrial Impact Zone; Timber Industry: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Kashulin, N.A.; Amundsen, P.A.; Bøhn, T.; Dalsbø, L.; Koroleva, I.M.; Kudrevtcheva, L.P.; Sandimirov, S.S.; Terentev, P.M. Environmental Monitoring in the Pasvik Watercourse in 2002; INEP, Kola Science Centre and NFH: Apatity, Russia; University of Tromsø: Tromsø, Norway, 2003. [Google Scholar]
- Kalabin, G.V.; Smirnov, D.Y. Environmental and Economical Substantiation Studt of Restricted Wideleness Area Laplandskiy Forest; Institute of the Industrial Ecology Problems of the North: Apatity, Russia, 2000. (In Russian) [Google Scholar]
- Karpenko, A. Influence of Industrial Pollution on Spruce Forests of the Lapland Nature Reserve for the Period 1981–1994; Funds of the Lapland Reserve: Monchegorsk, Russia, 1994; p. 123. (In Russian) [Google Scholar]
- Chernenkova, T. Response of Forest Vegetation to Industrial Pollution; Nauka: Moscow, Russia, 2002. (In Russian) [Google Scholar]
- Shipigina (Sklyar), E. Remote Sensing Methods for Environmental Monitoring of Human Impact on Sub-Arctic Ecosystems in Europe; University of Cambridge: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A. Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 22 June 2022).
- Prevéy, J.; Vellend, M.; Rüger, N.; Hollister, R.D.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Clark, K.; Cooper, E.J.; Elberling, B.; et al. Greater Temperature Sensitivity of Plant Phenology at Colder Sites: Implications for Convergence across Northern Latitudes. Glob. Chang. Biol. 2017, 23, 2660–2671. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.F.; Richardson, A.D.; Hufkens, K. On Quantifying the Apparent Temperature Sensitivity of Plant Phenology. New Phytol. 2020, 225, 1033–1040. [Google Scholar] [CrossRef] [Green Version]
- Hipel, K.; McLeod, A. Time Series Modelling of Water Resources and Environmental Systems, 1st ed.; Elsevier Science: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokio, Japan, 1994; Volume 45. [Google Scholar]
- Veselov, V.; Pribylskay, I.; Mirzeabacov, O. Monchegorsk. Specialized Data for Climate Research. Available online: http://aisori-m.meteo.ru/waisori/index0.xhtml (accessed on 20 February 2022). (In Russian).
- Kravtsova, V.; Loshkareva, A. Dynamics of Vegetation in the Tundra-Taifa Ecotone on the Kola Peninsula Depending on Climatic Fluctuations 2013. Ecology 2013, 44, 303–311. (In Russian) [Google Scholar] [CrossRef]
- Moiseev, P.A.; Galimova, A.A.; Bubnov, M.O.; Devi, N.M.; Fomin, V.V. Tree Stands and Their Productivity Dynamics at the Upper Growing Limit in Khibiny on the Background of Modern Climate Changes. Russ. J. Ecol. 2019, 50, 431–444. [Google Scholar] [CrossRef]
- Average Monthly and Annual Air Temperatures in Monchegorsk. Available online: http://www.pogodaiklimat.ru/history/22212.htm (accessed on 20 February 2022). (In Russian).
- Monthly and Yearly Total Precipitation in Monchegorsk. Available online: http://www.pogodaiklimat.ru/history/22212_2.htm (accessed on 20 February 2022). (In Russian).
- Monchegorsk Weather Archive. Available online: https://bit.ly/3H3AVhP (accessed on 20 February 2022). (In Russian).
- Rees, W.G.; Rigina, O. Methodologies for Remote Sensing of The Environmental Impacts of Industrial Activity in the Arctic and Sub-Arctic. In Social and Environmental Impacts in the North: Methods in Evaluation of Socio-Economic and Environmental Consequences of Mining and Energy Production in the Arctic and Sub-Arctic; Rasmussen, R.O., Koroleva, N.E., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 67–88. [Google Scholar] [CrossRef]
- Glazovskaya, M.; Kasimov, N. Geochemistry Basis of Environmental Monitoring. Bull. Mosc. Univ. 1987, 1, 11–17. (In Russian) [Google Scholar]
- Lukina, N.; Suhareva, T.; Isaeva, L. Technogenic Digression and Recultivation Successions in the Northern-Taiga Forests; Nauka: Moscow, Russia, 2005. (In Russian) [Google Scholar]
- Zhirov, K.; Golubeva, E.; Govorova, A.; Haitbaev, A. Structural and Functional Vegetation Changes in Conditions of Technogenic Pollution in the Extreme North; Nauka: Moscow, Russia, 2007. (In Russian) [Google Scholar]
- Crane, K.; Galasso, J. Arctic Environmental Atlas; Naval Research Laboratory: Washington, DC, USA, 1999. [Google Scholar]
- Kryuchkov, V.V. Extreme Anthropogenic Loads and the Northern Ecosystem Condition. Ecol. Appllications 1993, 3, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Rautio, P.; Huttunen, S.; Lamppu, J. Seasonal Foliar Chemistry of Northern Scots Pines under Sulphur and Heavy Metal Pollution. Chemosphere 1998, 37, 271–287. [Google Scholar] [CrossRef]
- Miettinen, J.O. Effects of the Kola Air Pollution Sources in Finnish Lapland Surface Waters During 1990–2006. 2008. Available online: https://helda.helsinki.fi/bitstream/handle/10138/45060/LAPra_5_2008.pdf?sequence=1&isAllowed=y (accessed on 15 August 2022).
- Tømmervik, H.; Johansen, M.; Pedersen, J.; Guneriussen, T. Integration of Remote Sensed and in-Site Data in an Analysis of the Air Pollution Effects on Terrestrial Ecosystems in the Border Areas Between Norway and Russia. Environ. Monit. Assess. 1998, 49, 51–85. [Google Scholar] [CrossRef]
- Yarmishko, V.T.; Ignateva, O.V. Multiyear Impact Monitoring of Pine Forests in the Central Part of the Kola Peninsula. Biol. Bull. 2019, 46. [Google Scholar] [CrossRef]
- Doncheva, A.; Pokrovskiy, S. Fundamentals of Environmental Technologies of Production: Environmental Assessment of Technologies; Lomonosov Moscow State University: Moscow, Russia, 1999; Available online: https://www.geokniga.org/books/545 (accessed on 31 March 2022). (In Russian)
- Norilsk Nickel Mining and Metallurgical Plant. Setting the Course for a Carbon-Free Future. Annual Report 2021. 2022. Available online: https://www.nornickel.ru/upload/iblock/369/godovoj_otchet_pao_gmk_norilskij_nikel_za_2021_god.pdf (accessed on 9 April 2022). (In Russian).
- Kola, J.S.C. Monitoring of the Environment in the Zone of Influence of JSC Kola MMC and Reclamation of Disturbed Lands. 2015. Available online: https://www.kolagmk.ru/ecology/monitoring (accessed on 9 April 2022). (In Russian).
- Norilsk Nickel Mining and Metallurgical Plant. We Provide Movement to the Green Future. Annual Report 2020. 2021. Available online: https://www.nornickel.ru/upload/iblock/7fc/godovoj_otchet_pao_gmk_norilskij_nikel_za_2020_god.pdf (accessed on 9 April 2022). (In Russian).
- Norilsk Nickel Mining and Metallurgical Plant. Investing in Sustainable Development. Annual Report 2017. 2018. Available online: https://ar2017.nornickel.ru/download/full-reports/ar_ru_annual-report_pages.pdf (accessed on 9 April 2022). (In Russian).
- Suhareva, T.; Ershov, V.; Isaeva, L.; Shkondin, M. Assessment of the State of Northern Taiga Forests in the Context of Reducing Atmospheric Emissions by the Severonickel Smelter. Non–Ferrous Metals 2020, 8, 33–41. (In Russian) [Google Scholar]
- Dudarev, G.; Boltramovich, S.; Efremov, D. From Russian Forests to World Markets. A Competitive Analysis of the Northwest Russian Forest Cluster; Number 195 in ETLA B; The Research Institute of the Finnish Economy: Helsinki, Finland, 2002. [Google Scholar]
- Leinonen, T.; Turtiainen, M.; Siekkinen, A. Forest Regeneration on the Northwestern Russia and the Comparison with Finland; METLA: Jyväskylä, Finland, 2009. [Google Scholar]
- Korotkov, V.; Koptsik, G.; Smirnova, I.; Koptsik, S. Restoration of Vegetation on Mine Lands Near Moncherorsk (Murmansk Region, Russia). Russ. J. Ecosyst. Ecol. 2019, 4. [Google Scholar] [CrossRef]
- Landsat Science Products. 2022. Available online: https://www.usgs.gov/landsat-missions/landsat-science-products (accessed on 20 October 2022).
- Teixeira Pinto, C.; Jing, X.; Leigh, L. Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using In Situ Measurements. Remote. Sens. 2020, 12, 2597. [Google Scholar] [CrossRef]
- GDAL/OGR Contributors. Geospatial Data Abstraction misc Library—GDAL. 2022. Available online: https://doi.org/10.5281/zenodo.5884351 (accessed on 20 October 2022).
- Devys, E.; Habermann, T.; Heazel, C.; Lott, R.; Rouault, E. OGC GeoTIFF standard. Open Geospatial Consortium. 2019. Available online: https://docs.ogc.org/is/19-008r4/19-008r4.html (accessed on 20 October 2022).
- Howell, M. Homebrew, The Missing Package Manager for macOS (or Linux). 2022. Available online: https://brew.sh (accessed on 20 October 2022).
- Singh, A. Review Article Digital Change Detection Techniques Using Remotely-Sensed Data. Int. J. Remote. Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. FIREMON: Fire Effects Monitoring and Inventory Systems; USDA Forest Service, Rocky Mountain Research Station, Department of Agricultural, Forest Service (General Technical Report): LA1-51; Chapter Landscape Assessment: Sampling and Analysis Methods; USDA Forest Service; Rocky Mountain Research Station: Colorado, CO, USA, 2006. [Google Scholar]
- Landsat Normalized Burn Ratio 2. 2022. Available online: https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio-2 (accessed on 1 March 2022).
- Gulli, A.; Pal, S. Deep learning with Keras; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Conda. 2022. Available online: https://github.com/conda/conda (accessed on 20 October 2022).
- Huang, H.; Legarsky, J.; Gudimetla, S.; Davis, C. Post-classification smoothing of digital classification map of St. Louis, Missouri. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 5, pp. 3039–3041. [Google Scholar] [CrossRef]
- Shutova, E.V.; Wielgolaski, F.E.; Karlsen, S.R.; Makarova, O.V.; Berlina, N.G.; Filimonova, T.V.; Haraldsson, E.; Aspholm, P.E.; Flø, L.; Høgda, K.A. Growing Seasons of Nordic Mountain Birch in Northernmost Europe as Indicated by Long-Term Field Studies and Analyses of Satellite Images. Int. J. Biometeorol. 2006, 51, 155–166. [Google Scholar] [CrossRef]
- Karlsson, P.S.; Bylund, H.; Neuvonen, S.; Heino, S.; Tjus, M. Climatic Response of Budburst in the Mountain Birch at Two Areas in Northern Fennoscandia and Possible Responses to Global Change. Ecography 2003, 26, 617–625. [Google Scholar] [CrossRef]
- Aksenov, D.; Zaitseva, I.; Kobyakov, K.; Petrov, V.; Purehovskiy, A.; Yaroshenko, A. Environmental Atlas of the Murmansk Region; Institute of North Industrial Ecology Problems, Kola Science Centre: Murmansk Region, Russia, 1999; Chapter Map: Old-Growth Forests; p. 18. (In Russian) [Google Scholar]
- Rautiainen, M. The Spectral Signature of Coniferous Forests: The Role of Stand Structure and Leaf Area Index. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2005. [Google Scholar]
- Gates, D.; Keegan, H.; Schleter, J.; Weidner, V. Spectral Properties of Plants. Appl. Opt. 1965, 4, 11–20. [Google Scholar] [CrossRef]
- Gausman, H. Reflectance of Leaf Components. Remote Sens. Environ. 1977, 6, 1–9. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of Vegetation Water Content Using Hyperspectral Vegetation Indices: A Comparison of Crop Water Indicators in Response to Water Stress Treatments for Summer Maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Tømmervik, H.; Johansen, B.E.; Eira, A.N. Mapping the Air Pollution Impact to Reindeer Range Areas in Pasvik, Northern Norway Using Satellite Imageries. Rangifer 1990, 10, 19–20. [Google Scholar] [CrossRef] [Green Version]
- Suhareva, T.A.; Lukina, N.V. Mineral Composition of Assimilative Organs of Conifers After Reduction of Atmospheric Pollution in the Kola Peninsula. Russ. J. Ecol. 2014, 45, 95–102. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.A.; et al. Complexity Revealed in the Greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Air Temperature and Precipitation by Weather Stations in Murmansk Region. Available online: http://www.pogodaiklimat.ru/monitors.php?id=rus (accessed on 13 September 2022). (In Russian).
- Shipigina, E.; Rees, W.G. Analysis of Human Impact on Boreal Vegetation around Monchegorsk, Kola peninsula, Using Automated Remote Sensing Technique. Polar Rec. 2012, 48, 94–106. [Google Scholar] [CrossRef]
- Chernenkova, T.; Basova E.V., B.; Bochkarev, Y.; Puzachenko, M. Assessment of Forest Biodiversity in the Zone of Impact from the Severonickel Smelter Complex. Lesovedenie 2009, 6, 32–45. (In Russian) [Google Scholar]
- Bleken, E.; Mysterud, I.; Mysterud, I. Forest Fire and Environmental Management: A Technical Report on Forest Fire as an Ecological Factor; University of Oslo: Oslo, Norway, 2003. [Google Scholar]
- Aurdal, L.; Huseby, R.; Eikvil, L.; Solberg, R.; Vikhamar-Schuler, D.; Solberg, A. Use of hidden Markov models and phenology for multitemporal satellite image classification: Applications to mountain vegetation classification. In Proceedings of the International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Biloxi, MS, USA, 16–18 May 2005; Volume 2005, pp. 220–224. [Google Scholar] [CrossRef]
Parameter | Value | Value for the Training Set |
---|---|---|
Path | 187 and 188 | 186–190 |
Row | 012 and 013 | |
Sensor bands | VNIR | |
Cloudiness | <30% | <10% |
Sun elevation | High | High |
Time of year | July to beginning August | |
Years | 1985–2021 | 1985–2010 |
Spacecraft ID | Sensor ID | Path/Row | Date | Entity ID |
---|---|---|---|---|
Landsat 5 | TM | 188/012 | 28 July 1986 | LT05_L2SP_188012_19860728_20200918_02_T1_SR |
Landsat 5 | TM | 190/012 | 13 July 1993 | LT05_L2SP_190012_19930713_20200914_02_T1_SR |
Landsat 7 | ETM+ | 188/012 | 26 July 2000 | LE07_L2SP_188012_20000726_20200918_02_T1_SR |
Landsat 7 | ETM+ | 186/012 | 28 July 2000 | LE07_L2SP_186012_20000728_20200918_02_T1_SR |
Landsat 5 | TM | 187/012 | 9 July 2005 | LT05_L2SP_187012_20050709_20200902_02_T1_SR |
Landsat 5 | TM | 190/011 | 25 July 2009 | LT05_L2SP_190011_20090725_20200827_02_T1_SR |
Spacecraft ID | Sensor ID | Path/Row | Date | Entity ID |
---|---|---|---|---|
Landsat 5 | TM | 188/012 | 9 July 1985 | LT05_L2SP_188012_19850709_20200918_02_T1_SR |
Landsat 5 | TM | 188/013 | 9 July 1985 | LT05_L2SP_188013_19850709_20200918_02_T1_SR |
Landsat 5 | TM | 188/012 | 23 July 1990 | LT05_L2SP_188012_19900723_20200915_02_T1_SR |
Landsat 5 | TM | 188/013 | 23 July 1990 | LT05_L2SP_188013_19900723_20200916_02_T1_SR |
Landsat 5 | TM | 188/012 | 8 August 1996 | LT05_L2SP_188012_19960808_20200911_02_T1_SR |
Landsat 5 | TM | 188/013 | 8 August 1996 | LT05_L2SP_188013_19960808_20200911_02_T1_SR |
Landsat 7 | ETM+ | 187/012 | 17 July 1999 | LE07_L2SP_187012_19990717_20200918_02_T1_SR |
Landsat 7 | ETM+ | 187/013 | 17 July 1999 | LE07_L2SP_187013_19990717_20200918_02_T1_SR |
Landsat 5 | TM | 187/012 | 9 July 2005 | LT05_L2SP_187012_20050709_20200902_02_T1_SR |
Landsat 5 | TM | 187/013 | 9 July 2005 | LT05_L2SP_187013_20050709_20200902_02_T1_SR |
Landsat 5 | TM | 187/012 | 10 July 2011 | LT05_L2SP_187012_20110710_20200822_02_T1_SR |
Landsat 5 | TM | 187/013 | 10 July 2011 | LT05_L2SP_187013_20110710_20200822_02_T1_SR |
Landsat 8 | OLI | 187/012 | 10 July 2017 | LC08_L2SP_187012_20170710_20200903_02_T1_SR |
Landsat 8 | OLI | 187/013 | 10 July 2017 | LC08_L2SP_187013_20170710_20200903_02_T1_SR |
Landsat 8 | OLI | 187/012 | 5 July 2021 | LC08_L2SP_187012_20210705_20210713_02_T1_SR |
Landsat 8 | OLI | 187/013 | 5 July 2021 | LC08_L2SP_187013_20210705_20210713_02_T1_SR |
Class Value | Forest Zone | Non-Forest Zone | Legend Colour | Training Pixels | Testing Pixels |
---|---|---|---|---|---|
0 | Missing data | ditto | Transparent | ||
1 | Cloud | ditto | 32,000 | 3000 | |
2 | Clean water: lake, river or shadow | ditto | 32,000 | 3000 | |
3 | Water with sediments: mostly industrial | ditto | 7775 | 1943 | |
4 | Non-vegetated: technogenic barren, residential or industrial area | Stone tundra | 32,000 | 3000 | |
5 | Burnt area: mostly new | ditto | 3632 | 907 | |
6 | Sparse tree/shrub: mostly deciduous | ditto | 32,000 | 3000 | |
7 | Wetland | — | 4235 | 1058 | |
8 | Coniferous: pine or 40–60% damaged spruce | — | 26,574 | 3000 | |
9 | Coniferous: spruce | — | 32,000 | 3000 | |
10 | Deciduous: birch, willow | — | 32,000 | 3000 | |
11 | — | Tundra shrub, dwarf shrub, lichen | 32,000 | 3000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sklyar, E.; Rees, G. Assessing Changes in Boreal Vegetation of Kola Peninsula via Large-Scale Land Cover Classification between 1985 and 2021. Remote Sens. 2022, 14, 5616. https://doi.org/10.3390/rs14215616
Sklyar E, Rees G. Assessing Changes in Boreal Vegetation of Kola Peninsula via Large-Scale Land Cover Classification between 1985 and 2021. Remote Sensing. 2022; 14(21):5616. https://doi.org/10.3390/rs14215616
Chicago/Turabian StyleSklyar, Ekaterina, and Gareth Rees. 2022. "Assessing Changes in Boreal Vegetation of Kola Peninsula via Large-Scale Land Cover Classification between 1985 and 2021" Remote Sensing 14, no. 21: 5616. https://doi.org/10.3390/rs14215616
APA StyleSklyar, E., & Rees, G. (2022). Assessing Changes in Boreal Vegetation of Kola Peninsula via Large-Scale Land Cover Classification between 1985 and 2021. Remote Sensing, 14(21), 5616. https://doi.org/10.3390/rs14215616