SealNet 2.0: Human-Level Fully-Automated Pack-Ice Seal Detection in Very-High-Resolution Satellite Imagery with CNN Model Ensembles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imagery and Data Annotation
2.1.1. Training/Validation Set
2.1.2. Expert-Selected Test Set
2.1.3. Random Crops Test Set
2.2. CNN Training and Validation
2.2.1. Data Augmentation
2.2.2. Loss Functions
2.3. Hyperparameter Search and Model Selection
2.4. Model Ensembling
2.5. Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VHR | very-high-resolution (satellite imagery) |
SO | Southern Ocean |
CV | computer vision |
GIS | geographic information system |
ADD | Antarctic Digital Database |
CNN | convolutional neural network |
References
- Forcada, J.; Trathan, P.N.; Boveng, P.L.; Boyd, I.L.; Burns, J.M.; Costa, D.P.; Fedak, M.; Rogers, T.L.; Southwell, C.J. Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing. Biol. Conserv. 2012, 149, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Southwell, C.; Bengtson, J.; Bester, M.; Blix, A.; Bornemann, H.; Boveng, P.; Cameron, M.; Forcada, J.; Laake, J.; Nordøy, E.; et al. A review of data on abundance, trends in abundance, habitat use and diet of ice-breeding seals in the Southern Ocean. CCAMLR Sci. 2012, 19, 49–74. [Google Scholar]
- Southwell, C.; Paxton, C.G.; Borchers, D.; Boveng, P.; De La Mare, W. Taking account of dependent species in management of the Southern Ocean krill fishery: Estimating crabeater seal abundance off east Antarctica. J. Appl. Ecol. 2008, 45, 622–631. [Google Scholar] [CrossRef] [Green Version]
- Cavan, E.; Belcher, A.; Atkinson, A.; Hill, S.L.; Kawaguchi, S.; McCormack, S.; Meyer, B.; Nicol, S.; Ratnarajah, L.; Schmidt, K.; et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 2019, 10, 4742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trathan, P.N.; Hill, S.L. The importance of krill predation in the Southern Ocean. In Biology and Ecology of Antarctic Krill; Springer: Berlin/Heidelberg, Germany, 2016; pp. 321–350. [Google Scholar]
- Atkinson, A.; Siegel, V.; Pakhomov, E.; Jessopp, M.; Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 727–740. [Google Scholar] [CrossRef]
- Reiss, C.S.; Cossio, A.; Santora, J.A.; Dietrich, K.S.; Murray, A.; Mitchell, B.G.; Walsh, J.; Weiss, E.L.; Gimpel, C.; Jones, C.D.; et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 2017, 568, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, A.; Hill, S.L.; Pakhomov, E.A.; Siegel, V.; Anadon, R.; Chiba, S.; Daly, K.L.; Downie, R.; Fielding, S.; Fretwell, P.; et al. KRILLBASE: A circumpolar database of Antarctic krill and salp numerical densities, 1926–2016. Earth Syst. Sci. Data 2017, 9, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Holdgate, M. Antarctic Ecology; Academic Press: Cambridge, MA, USA, 1970; Volume 1. [Google Scholar]
- Gonçalves, B.; Spitzbart, B.; Lynch, H. SealNet: A fully-automated pack-ice seal detection pipeline for sub-meter satellite imagery. Remote Sens. Environ. 2020, 239, 111617. [Google Scholar] [CrossRef]
- Øritsland, T. Biology and Population Dynamics of Antarctic Seals; Academic Press: Cambridge, MA, USA, 1970; pp. 361–366. [Google Scholar]
- Ackley, S.; Bengtson, J.; Bester, M.; Blix, A.; Bornemann, H.; Boveng, P.; Boyd, I.; Cameron, M.; Nordøy, E.; Plötz, J.; et al. The International Antarctic Pack Ice Seals (APIS) Program. Multi-disciplinary research into the ecology and behavior of Antarctic pack ice seals. Summary Update. In The Expert Group on Seals (EGS); Marthan, N.B., Brent, S.S., Eds.; Scientific Committee on Antarctic Research (SCAR): Cambridge, UK, 2006. [Google Scholar]
- Southwell, C. Satellite-linked dive recorders provide insights into the reproductive strategies of crabeater seals (Lobodon carcinophagus). J. Zool. 2004, 264, 399–402. [Google Scholar] [CrossRef]
- Rogers, T.L. Age-related differences in the acoustic characteristics of male leopard seals, Hydrurga leptonyx. J. Acoust. Soc. Am. 2007, 122, 596–605. [Google Scholar] [CrossRef]
- Gurarie, E.; Bengtson, J.L.; Bester, M.N.; Blix, A.S.; Cameron, M.; Bornemann, H.; Nordøy, E.S.; Plötz, J.; Steinhage, D.; Boveng, P. Distribution, density and abundance of Antarctic ice seals off Queen Maud Land and the eastern Weddell Sea. Polar Biol. 2017, 40, 1149–1165. [Google Scholar] [CrossRef]
- Sasse, D.B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 2003, 31, 1015–1020. [Google Scholar]
- LaRue, M.; Knight, J. Applications of Very High-Resolution Imagery in the Study and Conservation of Large Predators in the Southern Ocean. Conserv. Biol. 2014, 28, 1731–1735. [Google Scholar] [CrossRef]
- McMahon, C.R.; Howe, H.; Van Den Hoff, J.; Alderman, R.; Brolsma, H.; Hindell, M.A. Satellites, the all-seeing eyes in the sky: Counting elephant seals from space. PLoS ONE 2014, 9, e92613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, C.J.; Dispas, A.; Mosnier, A. Evaluating Satellite Imagery for Atlantic Walrus Odobenus Rosmarus Rosmarus Stock Assessment—A Pilot Study; Canadian Technical Report of Fisheries and Aquatic Sciences 3492; Fisheries and Oceans Canada: Winnipeg, MB, Canada, 2022.
- Borowicz, A.; Le, H.; Humphries, G.; Nehls, G.; Höschle, C.; Kosarev, V.; Lynch, H.J. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery. PLoS ONE 2019, 14, e0212532. [Google Scholar] [CrossRef] [Green Version]
- Welvaert, M.; Caley, P. Citizen surveillance for environmental monitoring: Combining the efforts of citizen science and crowdsourcing in a quantitative data framework. SpringerPlus 2016, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.D.; Williams, B.K. The potential for citizen science to produce reliable and useful information in ecology. Conserv. Biol. 2019, 33, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, L.A.; LaRue, M.; Nur, N.; Ainley, D.G.; Stammerjohn, S.E.; Pennycook, J.; Rotella, J.; Paterson, J.T.; Siniff, D.; Stamatiou, K.; et al. Reducing error and increasing reliability of wildlife counts from citizen science surveys: Counting Weddell Seals in the Ross Sea from satellite images. bioRxiv 2020. [Google Scholar] [CrossRef]
- LaRue, M.A.; Ainley, D.G.; Pennycook, J.; Stamatiou, K.; Salas, L.; Nur, N.; Stammerjohn, S.; Barrington, L. Engaging ‘the crowd’in remote sensing to learn about habitat affinity of the Weddell seal in Antarctica. Remote Sens. Ecol. Conserv. 2020, 6, 70–78. [Google Scholar] [CrossRef] [Green Version]
- LaRue, M.; Salas, L.; Nur, N.; Ainley, D.; Stammerjohn, S.; Pennycook, J.; Dozier, M.; Saints, J.; Stamatiou, K.; Barrington, L.; et al. Insights from the first global population estimate of Weddell seals in Antarctica. Sci. Adv. 2021, 7, eabh3674. [Google Scholar] [CrossRef]
- Gonçalves, B.C.; Wethington, M.; Lynch, H.J. Roadmap to a fully-automated, pan-Antarctic pack-ice seal monitoring program. 2022; in preparation. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Shou, W.; Ngo, T.; Sadick, A.M.; Wang, X. Computer vision techniques in construction: A critical review. Arch. Comput. Methods Eng. 2021, 28, 3383–3397. [Google Scholar] [CrossRef]
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled medical computer vision. NPJ Digit. Med. 2021, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Belward, A.S.; Skøien, J.O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Gonçalves, B.C.; Lynch, H.J. Fine-Scale Sea Ice Segmentation for High-Resolution Satellite Imagery with Weakly-Supervised CNNs. Remote Sens. 2021, 13, 3562. [Google Scholar] [CrossRef]
- Boulze, H.; Korosov, A.; Brajard, J. Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional Neural Networks. Remote Sens. 2020, 12, 2165. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Hong, Z.; Zhang, Y.; Yang, S.; Wang, J. Sea ice image classification based on heterogeneous data fusion and deep learning. Remote Sens. 2021, 13, 592. [Google Scholar] [CrossRef]
- Weinstein, B.G. A computer vision for animal ecology. J. Anim. Ecol. 2018, 87, 533–545. [Google Scholar] [CrossRef]
- M Le, H.; Goncalves, B.; Samaras, D.; Lynch, H. Weakly labeling the antarctic: The penguin colony case. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 18–25. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Marcel, S.; Rodriguez, Y. Torchvision the Machine-Vision Package of Torch. In Proceedings of the 18th ACM International Conference on Multimedia, Firenze, Italy, 25–29 October 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 1485–1488. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015. [Google Scholar] [CrossRef]
- Yakubovskiy, P. Segmentation Models Pytorch. 2020. Available online: https://github.com/qubvel/segmentation_models.pytorch (accessed on 7 November 2022).
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.; et al. Mixed Precision Training. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, CA, 30 April–3 May 2018. [Google Scholar]
- Brown, S.T.; Buitrago, P.; Hanna, E.; Sanielevici, S.; Scibek, R.; Nystrom, N.A. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research. In Practice and Experience in Advanced Research Computing; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–101. [Google Scholar] [CrossRef]
- Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning; Chaudhuri, K., Salakhutdinov, R., Eds.; Proceedings of Machine Learning Research; PMLR: Cambridge, MA, USA, 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Shapley, L.S. A Value for N-Person Games; RAND Corporation: Santa Monica, CA, USA, 1952. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the Advances in Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
- Matsuoka, K.; Skoglund, A.; Roth, G.; de Pomereu, J.; Griffiths, H.; Headland, R.; Herried, B.; Katsumata, K.; Le Brocq, A.; Licht, K.; et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environ. Model. Softw. 2021, 140, 105015. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, T.; Skidmore, A.K. Automatic Counting of Large Mammals from Very High Resolution Panchromatic Satellite Imagery. Remote Sens. 2017, 9, 878. [Google Scholar] [CrossRef] [Green Version]
- Kellenberger, B.; Marcos, D.; Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 2018, 216, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Zanzotto, F.M. Human-in-the-loop artificial intelligence. J. Artif. Intell. Res. 2019, 64, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Branson, S.; Wah, C.; Schroff, F.; Babenko, B.; Welinder, P.; Perona, P.; Belongie, S. Visual recognition with humans in the loop. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010; pp. 438–451. [Google Scholar]
- Paladini, E.; Vantaggiato, E.; Bougourzi, F.; Distante, C.; Hadid, A.; Taleb-Ahmed, A. Two Ensemble-CNN Approaches for Colorectal Cancer Tissue Type Classification. J. Imaging 2021, 7, 51. [Google Scholar] [CrossRef]
- Pramanik, R.; Biswas, M.; Sen, S.; de Souza Júnior, L.A.; Papa, J.P.; Sarkar, R. A fuzzy distance-based ensemble of deep models for cervical cancer detection. Comput. Methods Programs Biomed. 2022, 219, 106776. [Google Scholar] [CrossRef] [PubMed]
Observer/Model | Precision | Recall | f1 | AI Help | Architecture | Logit Correlation |
---|---|---|---|---|---|---|
HJL | 0.35 | 0.56 | 0.43 | No | - | - |
HJL | 0.58 | 0.69 | 0.63 | Yes | - | - |
MW | 0.50 | 0.63 | 0.56 | No | - | - |
MW | 0.55 | 0.69 | 0.61 | Yes | - | - |
CNN 1 | 0.60 | 0.63 | 0.62 | - | UnetEfficientNet-b1 | 0.54 |
CNN 2 | 0.45 | 0.67 | 0.54 | - | UnetEfficientNet-b1 | 0.33 |
CNN 3 | 0.71 | 0.67 | 0.69 | - | UnetEfficientNet-b1 | 0.60 |
CNN 4 | 0.44 | 0.67 | 0.53 | - | UnetEfficientNet-b1 | 0.36 |
CNN 5 | 0.68 | 0.53 | 0.60 | - | UnetEfficientNet-b0 | 0.53 |
SealNet 1.0 | 0.07 | 0.02 | 0.03 | - | SealNet | 0.07 |
ensemble 1 | 0.80 | 0.64 | 0.71 | - | CatBoost | 0.69 |
ensemble 2 | 0.74 | 0.67 | 0.70 | - | XGBoost | 0.67 |
ensemble 3 | 0.64 | 0.70 | 0.67 | - | CatBoost | 0.67 |
ensemble 4 | 0.73 | 0.67 | 0.70 | - | XGBoost | 0.68 |
ensemble 5 | 0.73 | 0.66 | 0.70 | - | XGBoost | 0.67 |
ensemble naive | 0.59 | 0.69 | 0.64 | - | ElasticNet | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, B.C.; Wethington, M.; Lynch, H.J. SealNet 2.0: Human-Level Fully-Automated Pack-Ice Seal Detection in Very-High-Resolution Satellite Imagery with CNN Model Ensembles. Remote Sens. 2022, 14, 5655. https://doi.org/10.3390/rs14225655
Gonçalves BC, Wethington M, Lynch HJ. SealNet 2.0: Human-Level Fully-Automated Pack-Ice Seal Detection in Very-High-Resolution Satellite Imagery with CNN Model Ensembles. Remote Sensing. 2022; 14(22):5655. https://doi.org/10.3390/rs14225655
Chicago/Turabian StyleGonçalves, Bento C., Michael Wethington, and Heather J. Lynch. 2022. "SealNet 2.0: Human-Level Fully-Automated Pack-Ice Seal Detection in Very-High-Resolution Satellite Imagery with CNN Model Ensembles" Remote Sensing 14, no. 22: 5655. https://doi.org/10.3390/rs14225655
APA StyleGonçalves, B. C., Wethington, M., & Lynch, H. J. (2022). SealNet 2.0: Human-Level Fully-Automated Pack-Ice Seal Detection in Very-High-Resolution Satellite Imagery with CNN Model Ensembles. Remote Sensing, 14(22), 5655. https://doi.org/10.3390/rs14225655