Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
- i.
- Remote sensing data
- ii.
- NDVI data from GEE
- iii.
- LULC data
- iv.
- DEM data
- v.
- Winter wheat cropping distribution data in China
- vi.
- Statistical data
2.3. Methods
- ■
- Water area extraction
- ■
- Flood characteristics detection
- ■
- Crop damage identification
3. Results and Discussion
3.1. Spatial and Temporal Changes in the Flooded Area
3.2. Assessment of Crop Production Losses in Flooded Areas
3.3. Advantages of Hisea-1 Data
3.4. Result Validation and Uncertainty Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janssen, E.; Sriver, R.L.; Wuebbles, D.J.; Kunkel, K.E. Seasonal and regional variations in extreme precipitation event frequency using CMIP5. Geophys. Res. Lett. 2016, 43, 5385–5393. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Hou, X.Y.; Wang, Y.D. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmos. Res. 2017, 197, 94–104. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Qin, D.; Thomas, S. Highlights of the IPCC Working Group I Fifth Assessment Report. Progress. Inquisitiones Mutat. Clim. 2014, 10, 1–6. [Google Scholar]
- Re, S. Flood—An Underestimated Risk: Inspect, Inform, Insure; Available via Swiss Re; Swiss Reinsurance Company Ltd.: Zurich, Switzerland, 2018. [Google Scholar]
- Yuehua, Z.; Tao, P.; Ruiqin, S. Research progress on risk assessment of heavy rainfall and flood disasters in China. Torrential Rain Disasters 2019, 38, 494–501. [Google Scholar]
- Compilation Group of China Flood and Drought Disaster Prevention Bulletin. Summary of China Flood and Drought Disaster Prevention Bulletin 2020. China Flood Drought Manag. 2021, 31, 26–32. (In Chinese) [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.; Jiang, W.; Hou, Y.; Chen, Z.; Jia, K. Dynamic Change Analysis of Surface Water in the Yangtze River Basin Based on MODIS Products. Remote Sens. 2018, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Olthof, I.; Tolszczuk-Leclerc, S. Comparing Landsat and RADARSAT for Current and Historical Dynamic Flood Mapping. Remote Sens. 2018, 10, 780. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Fu, Y.; Sun, Y.; Zhang, C.; Wang, Y.; Lichtfouse, E. High resolution mapping of nighttime light and air pollutants during the COVID-19 lockdown in Wuhan. Environ. Chem. Lett. 2021, 19, 3477–3485. [Google Scholar] [CrossRef]
- Zheng, S.; Schlink, U.; Ho, K.F.; Singh, R.P.; Pozzer, A.J.G. Spatial Distribution of PM2. 5-Related Premature Mortality in China. GeoHealth 2021, 5, e2021GH000532. [Google Scholar] [CrossRef]
- Di Vittorio, C.A.; Georgakakos, A.P. Land cover classification and wetland inundation mapping using MODIS. Remote Sens. Environ. 2018, 204, 1–17. [Google Scholar] [CrossRef]
- Yeo, S.; Lafon, V.; Alard, D.; Curti, C.; Dehouck, A.; Benot, M.-L. Classification and mapping of saltmarsh vegetation combining multispectral images with field data. Estuar. Coast. Shelf Sci. 2020, 236, 106643. [Google Scholar] [CrossRef]
- Coulter, L.L.; Stow, D.A.; Tsai, Y.-H.; Ibanez, N.; Shih, H.-C.; Kerr, A.; Benza, M.; Weeks, J.R.; Mensah, F. Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM + imagery. Remote Sens. Environ. 2016, 184, 396–409. [Google Scholar] [CrossRef]
- Dai, Y.; Feng, L.; Hou, X.; Tang, J. An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery. Remote Sens. Environ. 2021, 260, 112459. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Amitrano, D.; di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [Google Scholar] [CrossRef]
- Jiang, X.; Liang, S.; He, X.; Ziegler, A.D.; Lin, P.; Pan, M.; Wang, D.; Zou, J.; Hao, D.; Mao, G.; et al. Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 178, 36–50. [Google Scholar] [CrossRef]
- Ulaby, F.; Dobson, M.C.; Álvarez-Pérez, J.L. Handbook of Radar Scattering Statistics for Terrain; Artech House: London, UK, 2019. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Martinis, S.; Twele, A.; Voigt, S. Unsupervised Extraction of Flood-Induced Backscatter Changes in SAR Data Using Markov Image Modeling on Irregular Graphs. Trans. Geosci. Remote Sens. 2011, 49, 251–263. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, P. Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens. Environ. 2011, 115, 990–1002. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.P.; Bates, P.D.; Mason, D.C. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. Ieee Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Voormansik, K.; Praks, J.; Antropov, O.; Jagomagi, J.; Zalite, K. Flood Mapping with TerraSAR-X in Forested Regions in Estonia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 562–577. [Google Scholar] [CrossRef]
- Chini, M.; Pelich, R.; Pulvirenti, L.; Pierdicca, N.; Hostache, R.; Matgen, P. Sentinel-1 InSAR Coherence to Detect Floodwater in Urban Areas: Houston and Hurricane Harvey as A Test Case. Remote Sens. 2019, 11, 107. [Google Scholar] [CrossRef]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Werninghaus, R. TerraSAR-X mission. In Proceedings of the SAR Image Analysis, Modeling, and Techniques VI, Bellingham, WA, USA, 12 February 2004; pp. 9–16. [Google Scholar]
- Xue, S.; Geng, X.; Meng, L.; Xie, T.; Huang, L.; Yan, X.-H. HISEA-1: The First C-Band SAR Miniaturized Satellite for Ocean and Coastal Observation. Remote Sens. 2021, 13, 2076. [Google Scholar] [CrossRef]
- China’s “Hisea-1” satellite to help Tonga disaster relief. Sci. Technol. Dly. 2022, 51, 862–872. (In Chinese)
- Lang, Y.; Jiang, Z.; Wu, X. Investigating the Linkage between Extreme Rainstorms and Concurrent Synoptic Features: A Case Study in Henan, Central China. Water 2022, 14, 1065. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Luo, Y.; Liu, B.; Ren, G.; Zhou, T.; Martinez-Villalobos, C.; Chang, M. Revealing the Circulation Pattern Most Conducive to Precipitation Extremes in Henan Province of North China. Geophys. Res. Lett. 2022, 49, e2022GL098034. [Google Scholar] [CrossRef]
- China State Council Disaster Investigation Team. Investigation Report on the ‘720’ Exceptionally Heavy Rainstorm Disaster in Zhengzhou, Henan Province. 2022. Available online: http://www.zyhc.gov.cn/zwgk/zfxxgkml/zdlyxx/zdmsxx_5866586/aqsc/202202/P020220222563841407337.pdf (accessed on 21 January 2022). (In Chinese)
- Ding, Y. On the study of the unprecedented heavy rainfall in Henan Province during 4–8 August 1975: Review and assessment. Acta Meteorol. Sin. 2015, 73, 411–424. [Google Scholar]
- The State Council of the People’s Republic of China. 2019. Available online: https://baike.baidu.com/reference/132980/2e26FfNve7XDj_XhT6XOKmzIC1Egp_G5Qs7phU6bm70S3wkdVDTRqmx0IV8qzt7xCzND1IPJ5fj5H3S7DJBn6MWLyKT7LhVhuuLLDqm1xBtYcJg (accessed on 22 April 2019). (In Chinese).
- Henan Province Bureau of Statistics. 2022. Available online: https://tjj.henan.gov.cn/2022/03-10/2412169.html (accessed on 12 March 2022). (In Chinese)
- Tian, W.; Cao, X.; Peng, K.J.S. Technology for Position Correction of Satellite Precipitation and Contributions to Error Reduction—A Case of the ‘720’ Rainstorm in Henan, China. Sensors 2022, 22, 5583. [Google Scholar] [CrossRef]
- Shi, W.; Li, X.; Zeng, M.; Zhang, B.; Wang, H.; Zhu, K.; Zhuge, X. Multi-model comparison and high-resolution regional model forecast analysis for the ‘7· 20’Zhengzhou severe heavy rain. Trans. Atmos. Sci. 2021, 44, 688–702. [Google Scholar]
- Li, W.; Ma, H.; Fu, R.; Han, H.; Wang, X. Development and Maintenance Mechanisms of a Long-Lived Mesoscale Vortex Which Governed the Earlier Stage of the “21.7” Henan Torrential Rainfall Event. Front. Earth Sci. 2022, 10, 944. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, W.; Deng, Z.; Liu, J.; Wang, B.; Lu, B.; Wang, S.; Dong, L. Assimilation of the FY-4A AGRI Clear-Sky Radiance Data in a Regional Numerical Model and Its Impact on the Forecast of the “21· 7” Henan Extremely Persistent Heavy Rainfall. Adv. Atmos. Sci. 2022, 1–17. [Google Scholar] [CrossRef]
- Zeng, L.; Li, L.; Wan, L. Rapid extraction of flood inundation extent based on Sentinel-1 satellite SAR data. Geoinf. World 2015, 22, 100–103+107. (In Chinese) [Google Scholar]
- Wu, W.H.; Wang, L.H.; Ma, Z. Flood extraction and monitoring based on Sentinel-1B SAR data. Mapp. Spat. Geogr. Inf. 2019, 42, 110–111. (In Chinese) [Google Scholar]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W.D. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- Haddad, O.; Abdelfattah, R.; Ajili, H. Extracting radar shadow from SAR images. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2101–2104. [Google Scholar]
- Demek, J.; Embleton, C. Guide to Medium-Scale. Geomorphological Mapping; IGU Commission on Geomorphological Survey and Mapping; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1978. [Google Scholar]
- Jia, S.C.; Xue, D.J.; Li, C.R.; Zheng, J.; Li, W.Q. Study of water body information extraction method based on Sentinel-1 data. Yangtze River 2019, 50, 213–217. (In Chinese) [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 595. [Google Scholar]
- Gong, Y.; Yang, Y.Q. Fast extraction and change analysis of flood inundation extent based on Sentinel-1 SAR images. In Proceedings of the 2020 Annual Academic Conference of Jiangsu Mapping and Geographic Information Society, Online, 30–31 October 2020; pp. 29–32. (In Chinese). [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Piloyan, A.; Konečný, M. Semi-automated classification of landform elements in Armenia based on SRTM DEM using k-means unsupervised classification. Quaest. Geogr. 2017, 36, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Cao, S. Directly focus on the site of the Hebi section of the Weihe River breach. China Youth 2021, 15, 1. (In Chinese) [Google Scholar]
- Zheng, T.; Zhang, X.; Yin, G.; Wang, L.; Han, Y.; Chen, L.; Huang, F.; Tang, J.; Xia, X.; He, Z. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Res. 2011, 122, 225–233. [Google Scholar] [CrossRef]
- Henan Province Statistical Yearbook 2021. 2021. Available online: https://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2021nj/zk/indexch.htm (accessed on 16 December 2021). (In Chinese)
- He, P.; Li, S.; Jin, J.; Wang, H.; Li, C.; Wang, Y.; Cui, R. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-central China. Agron. J. 2009, 101, 1489–1496. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Jiang, D. Extraction of multi-crop planting areas from MODIS data. Resour. Sci. 2004, 26, 17–22. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Heng, Y. Automatic Extraction and Analysis of Flood Area in Henan Province Based on Multi-Source Remote Sensing Satellite. Sci. Technol. Innov. Her. 2021, 18, 115–119. (In Chinese) [Google Scholar]
- Zhang, S.; Ma, Z.; Li, Z.; Zhang, P.; Liu, Q.; Nan, Y.; Zhang, J.; Hu, S.; Feng, Y.; Zhao, H. Using CYGNSS Data to Map Flood Inundation during the 2021 Extreme Precipitation in Henan Province, China. Remote Sens. 2021, 13, 5181. [Google Scholar] [CrossRef]
- Wang, J.X.; Qiu, S.K.; Wang, Z.; Wang, C.; Du, J. Flood Disaster Monitoring Based on Water Body Extraction of GF-3 Image in Zhengzhou. Henan Sci. 2021, 2, 86–92. [Google Scholar]
- Tingsanchali, T. Urban flood disaster management. Procedia Eng. 2012, 32, 25–37. [Google Scholar] [CrossRef]
Number | Date (Acquisition Time) | Data Source | Product Type | Imaging Mode | Process Level |
---|---|---|---|---|---|
1 | 2021.07.15 | Sentinel-1A | GRD | IW | Level-1 |
2 | 2021.07.25 | Hisea-1 | ORG | SM | Level-2 |
3 | 2021.07.27 | Sentinel-1A | GRD | IW | Level-1 |
4 | 2021.07.31 | Sentinel-2B | — | — | Level-1 |
5 | 2021.08.08 | Sentinel-1A | GRD | IW | Level-1 |
6 | 2021.08.13 | Hisea-1 | ORG | SM | Level-2 |
7 | 2021.08.20 | Sentinel-1A | GRD | IW | Level-1 |
8 | 2021.09.01 | Sentinel-1A | GRD | IW | Level-1 |
9 | 2021.09.09 | Sentinel-2B | — | — | Level-1 |
10 | 2021.09.13 | Sentinel-1A | GRD | IW | Level-1 |
11 | 2021.09.25 | Sentinel-1A | GRD | IW | Level-1 |
12 | 2021.10.07 | Sentinel-1A | GRD | IW | Level-1 |
13 | 2021.10.19 | Sentinel-1A | GRD | IW | Level-1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, D.; Wang, S.; Xiang, H.; Zhang, W. Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sens. 2022, 14, 5771. https://doi.org/10.3390/rs14225771
Zhang M, Liu D, Wang S, Xiang H, Zhang W. Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sensing. 2022; 14(22):5771. https://doi.org/10.3390/rs14225771
Chicago/Turabian StyleZhang, Minghui, Di Liu, Siyuan Wang, Haibing Xiang, and Wenxiu Zhang. 2022. "Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China" Remote Sensing 14, no. 22: 5771. https://doi.org/10.3390/rs14225771
APA StyleZhang, M., Liu, D., Wang, S., Xiang, H., & Zhang, W. (2022). Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sensing, 14(22), 5771. https://doi.org/10.3390/rs14225771