Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
3. Methods
3.1. Modification and Improvement of the SWAT Model
3.1.1. Snowmelt Calculation Considering Total Solar Radiation
3.1.2. Snowmelt Factor with an Improved Representation of Seasonal Variation
3.1.3. Snowmelt Temperature Threshold
3.2. Setup and Validation of the Modified Model SWAT+
3.3. Evaluation of the Modified Model SWAT+
3.4. Bias Correction Method for Climate Projection Data
4. Results
4.1. Model Performance Assessment
4.2. Projected Change in Snowmelt Runoff under Climate Change
5. Discussion
5.1. Effect of the Modified Temperature Index Method
5.2. Snowmelt Temperature Threshold
5.3. SWAT+ Model Uncertainty
5.4. Limitations and Further Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pangali Sharma, T.P.; Zhang, J.; Khanal, N.R.; Prodhan, F.A.; Paudel, B.; Shi, L.; Nepal, N. Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal. Remote Sens. 2020, 12, 1951. [Google Scholar] [CrossRef]
- Qi, W.; Feng, L.; Yang, H.; Liu, J. Spring and summer potential flood risk in Northeast China. J. Hydrol.-Reg. Stud. 2021, 38, 100951. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Akyürek, Z.; Şorman, A.A.; Şensoy, A.; Şorman, A.Ü. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Malcher, P.; Müller, F. Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens. Environ. 2008, 112, 1408–1420. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Pomeroy, J.W.; Alonso-González, E.; Morán-Tejeda, E.; Revuelto, J. Decoupling of warming mountain snowpacks from hydrological regimes. Environ. Res. Lett. 2020, 15, 114006. [Google Scholar] [CrossRef]
- Male, D.H.; Granger, R.J. Snow surface energy exchange. Water Resour. Res. 1981, 17, 609–627. [Google Scholar] [CrossRef]
- De Walle, D.R.; Rango, A. Principles of Snow Hydrology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Adhikari, T.R.; Talchabhadel, R.; Shrestha, S.; Sharma, S.; Aryal, D.; Pradhanang, S.M. The evaluation of climate change impact on hydrologic processes of a mountain river basin. Theor. Appl. Climatol. 2022, 150, 749–762. [Google Scholar] [CrossRef]
- Pandey, V.; Dhaubanjar, S.; Bharati, L.; Thapa, B. Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Climate change impact assessment (Part-B). J. Hydrol.-Reg. Stud. 2020, 29, 100691. [Google Scholar] [CrossRef]
- Seibert, J.; Bergström, S. A retrospective on hydrological catchment modelling based on half a century with the HBV model. Hydrol. Earth Syst. Sci. 2022, 26, 1371–1388. [Google Scholar] [CrossRef]
- Bergström, S. The HBV model. In Computer Models of Watershed Hydrology; Water Resources Publications: Littleton, CO, USA, 1995; pp. 443–476. [Google Scholar]
- Martinec, J.; Rango, A.; Roberts, R. Snowmelt Runoff Model (SRM) User’s Manual; Gómez-Landesa, E., Bleiweiss, M.P., Eds.; New Mexico State University: Las Cruces, NM, USA, 2008; p. 35. [Google Scholar]
- Xie, S.; Du, J.; Zhou, X.; Zhang, X.; Feng, X.; Zheng, W.; Li, Z.; Xu, C. A progressive segmented optimization algorithm for calibrating time-variant parameters of the snowmelt runoff model (SRM). J. Hydrol. 2018, 566, 470–483. [Google Scholar] [CrossRef]
- Quick, M.C.; Pipes, A. UBC WATERSHED MODEL/Le modèle du bassin versant UCB. Hydrol. Sci. J. 1977, 22, 153–161. [Google Scholar] [CrossRef]
- Adnan, M.; Liu, S.; Saifullah, M.; Iqbal, M.; Ali, A.F.; Mukhtar, M.A. Spatiotemporal variations in runoff and runoff components in response to climate change in a glacierized subbasin of the Upper Indus Basin, Pakistan. Front. Earth Sci. 2022, 10, 970349. [Google Scholar] [CrossRef]
- Fang, X.; Pomeroy, J.W. Diagnosis of future changes in hydrology for a Canadian Rockies headwater basin. Hydrol. Earth Syst. Sci. 2020, 24, 2731–2754. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Gray, D.M.; Brown, T.; Hedstrom, N.R.; Quinton, W.L.; Granger, R.J.; Carey, S.K. The cold regions hydrological model: A platform for basing process representation and model structure on physical evidence. Hydrol. Process. 2007, 21, 2650–2667. [Google Scholar] [CrossRef]
- Zhang, Z.; Kane, D.L.; Hinzman, L.D. Development and application of a spatially-distributed Arctic hydrological and thermal process model (ARHYTHM). Hydrol. Process. 2000, 14, 1017–1044. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R.; Srinivasan, R.; King, K.W. SWAT Manual; USDA Agricultural Service and Blackland Research Center: Temple, TX, USA, 1996. [Google Scholar]
- Tiwari, S.; Kar, S.C.; Bhatla, R.; Bansal, R. Temperature index based snowmelt runoff modelling for the Satluj River basin in the western Himalayas. Meteorol. Appl. 2018, 25, 302–313. [Google Scholar] [CrossRef]
- Pradhanang, S.M.; Anandhi, A.; Mukundan, R.; Zion, M.S.; Pierson, D.C.; Schneiderman, E.M.; Matonse, A.; Frei, A. Application of SWAT model to assess snowpack development and streamflow in the Cannonsville watershed, New York, USA. Hydrol. Process. 2011, 25, 3268–3277. [Google Scholar] [CrossRef]
- Siderius, C.; Biemans, H.; Wiltshire, A.; Rao, S.; Franssen, W.; Kumar, P.; Gosain, A.K.; Van Vliet, M.; Collins, D.N. Snowmelt contributions to discharge of the Ganges. Sci. Total Environ. 2013, 468, S93–S101. [Google Scholar] [CrossRef]
- Chiphang, N.; Bandyopadhyay, A.; Bhadra, A. Assessing the effects of snowmelt dynamics on streamflow and water balance components in an Eastern Himalayan river basin using SWAT model. Environ. Model. Assess. 2020, 25, 861–883. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S. Progress of the application of degree-day model to study glaciers and snow cover. J. Glaciol Geocryol. 2006, 28, 101–107. [Google Scholar]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Andrianaki, M.; Shrestha, J.; Kobierska, F.; Nikolaidis, N.P.; Bernasconi, S.M. Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment. Hydrol. Earth Syst. Sci. 2019, 23, 3219–3232. [Google Scholar] [CrossRef] [Green Version]
- Myers, D.T.; Ficklin, D.L.; Robeson, S.M. Incorporating rain-on-snow into the SWAT model results in more accurate simulations of hydrologic extremes. J. Hydrol. 2021, 603, 126972. [Google Scholar] [CrossRef]
- Qi, J.; Li, S.; Jamieson, R.; Hebb, D.; Xing, Z.; Meng, F. Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions. Environ. Modell. Softw. 2017, 93, 146–160. [Google Scholar] [CrossRef]
- Debele, B.; Srinivasan, R.; Gosain, A.K. Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT. Water Resour. Manag. 2010, 24, 1065–1088. [Google Scholar] [CrossRef]
- Meng, X.; Ji, X.; Liu, Z.; Xiao, J.; Chen, X.; Wang, F. Research on improvement and application of snowmelt module in SWAT. J. Nat. Resour. 2014, 29, 528–539. [Google Scholar]
- Pellicciotti, F.; Brock, B.; Strasser, U.; Burlando, P.; Funk, M.; Corripio, J. An enhanced temperature-index glacier melt model including the shortwave radiation balance: Development and testing for Haut Glacier d’Arolla, Switzerland. J. Glaciol. 2005, 51, 573–587. [Google Scholar] [CrossRef]
- Irvine Fynn, T.D.; Hanna, E.; Barrand, N.E.; Porter, P.R.; Kohler, J.; Hodson, A.J. Examination of a physically based, high-resolution, distributed Arctic temperature-index melt model, on Midtre Lovénbreen, Svalbard. Hydrol. Process. 2014, 28, 134–149. [Google Scholar] [CrossRef]
- Shakoor, A.; Burri, A.; Bavay, M.; Ejaz, N.; Ghumman, A.R.; Comola, F.; Lehning, M. Hydrological response of two high altitude Swiss catchments to energy balance and temperature index melt schemes. Polar Sci. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Painter, T.H.; Skiles, S.M.; Deems, J.S.; Brandt, W.T.; Dozier, J. Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust Radiative Forcing in Snow. Geophys. Res. Lett. 2017, 45, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, A. Physical basis for the temperature-based melt-index method. J. Appl. Meteorol. 2001, 40, 753–761. [Google Scholar] [CrossRef]
- Bouamri, H.; Boudhar, A.; Gascoin, S.; Kinnard, C. Performance of temperature and radiation index models for point-scale snow water equivalent (SWE) simulations in the Moroccan High Atlas Mountains. Hydrol. Sci. J. 2018, 63, 1844–1862. [Google Scholar] [CrossRef]
- Meriö, L. The Measurement and Modeling of Snowmelt in Sub-Arctic Site Using Low Cost Temperature Loggers. Master’s Thesis, University of Oulu, Oulu, Finland, 2015. [Google Scholar]
- Singh, V.; Jain, S.K.; Goyal, M.K. An assessment of snow-glacier melt runoff under climate change scenarios in the Himalayan basin. Stoch. Environ. Res. Risk Assess. 2021, 35, 2067–2092. [Google Scholar] [CrossRef]
- Dombrovsky, L.A.; Kokhanovsky, A.A.; Randrianalisoa, J.H. On snowpack heating by solar radiation: A computational model. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 72–85. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A. Parameter values for snowmelt runoff modelling. J. Hydrol. 1986, 84, 197–219. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Li, H.; Li, X.; Yang, D.; Wang, J.; Gao, B.; Pan, X.; Zhang, Y.; Hao, X. Tracing snowmelt paths in an integrated hydrological model for understanding seasonal snowmelt contribution at basin scale. J. Geophys. Res.-Atmos. 2019, 124, 8874–8895. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Xie, Y.; Dun, X.; Wang, D.; Zhang, S. Ephemeral gullies caused by snowmelt: A ten-year study in northeastern China. Soil Tillage Res. 2021, 212, 105048. [Google Scholar] [CrossRef]
- Musselman, K.N.; Clark, M.P.; Liu, C.; Ikeda, K.; Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Chang. 2017, 7, 214–219. [Google Scholar] [CrossRef]
- Wu, X.; Che, T.; Li, X.; Wang, N.; Yang, X. Slower Snowmelt in Spring Along With Climate Warming across the Northern Hemisphere. Geophys. Res. Lett. 2018, 45, 12, 312–331, 339. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, G.; Li, H. Optimization and Application of Snow Melting Modules in SWAT Model for the Alpine Regions of Northern China. Water 2020, 12, 636. [Google Scholar] [CrossRef] [Green Version]
- Blahušiaková, A.; Matoušková, M.; Jeníček, M.; Ledvinka, O.; Kliment, Z.; Podolinská, J.; Snopková, Z. Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe. Hydrol. Sci. J. 2020, 65, 2083–2096. [Google Scholar] [CrossRef]
- Godsey, S.E.; Kirchner, J.W.; Tague, C.L. Effects of changes in winter snowpacks on summer low flows: Case studies in the Sierra Nevada, California, USA. Hydrol. Process. 2014, 28, 5048–5064. [Google Scholar] [CrossRef]
- Kaplan, H. Algorithm Theory: SWAT 2010; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Duan, Y.; Luo, M.; Guo, X.; Cai, P.; Li, F. Study on the Relationship between Snowmelt Runoff for Different Latitudes and Vegetation Growth Based on an Improved SWAT Model in Xinjiang, China. Sustainability 2021, 13, 1189. [Google Scholar] [CrossRef]
- Uwamahoro, S.; Liu, T.; Nzabarinda, V.; Habumugisha, J.M.; Habumugisha, T.; Harerimana, B.; Bao, A. Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan. Atmosphere 2021, 12, 1580. [Google Scholar] [CrossRef]
- Kuhn, M. Micro-meteorological conditions for snow melt. J. Glaciol. 1987, 33, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Shen, Y.; He, J. Snow properties on different underlying surfaces during snow-melting period in the Altay Mountains: Observation and analysis. J. Glaciol. Geocryol. 2014, 36, 491–499. [Google Scholar]
- Vorkauf, M.; Marty, C.; Kahmen, A.; Hiltbrunner, E. Past and future snowmelt trends in the Swiss Alps: The role of temperature and snowpack. Clim. Chang. 2021, 165, 44. [Google Scholar] [CrossRef]
- Li, W.; Cidan, Y.; Wang, A.; Li, H.; Tian, L. Identification of influencing factors and machanism of spring runoff in Baishan Watershed, China. Water Resour. Hydropower Eng. 2019, 50, 63–72. [Google Scholar]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Che, T.; Ding, Y. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China. Remote Sens. 2015, 7, 7212–7230. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, J.; Lu, X.; Nie, L. Assessment of glacier-and snowmelt-driven streamflow in the arid middle Tianshan Mountains of China. Hydrol. Process. 2020, 34, 2750–2762. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Liu, S.; Yang, Y.; Xu, G.; Xu, Y.; Jiang, T.; Xiao, C. Snow cover loss compounding the future economic vulnerability of western China. Sci. Total Environ. 2021, 755, 143025. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Y.; Wang, J.; Tian, W.; Liu, Q.; Ma, G.; Kan, X.; Chu, Y. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning. Remote Sens. 2021, 13, 584. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Liu, G.; Liu, Z.; Wang, X. Trends and variability in snowmelt in China under climate change. Hydrol. Earth Syst. Sci. 2022, 26, 305–329. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P. CMIP6 Projections of the “Warming-Wetting” Trend in Northwest China and Related Extreme Events Based on Observational Constraints. J. Meteorol. Res. 2022, 36, 239–250. [Google Scholar] [CrossRef]
- Meier, H.M.; Kniebusch, M.; Dieterich, C.; Gröger, M.; Zorita, E.; Elmgren, R.; Myrberg, K.; Ahola, M.P.; Bartosova, A.; Bonsdorff, E. Climate change in the Baltic Sea region: A summary. Earth Syst. Dynam. 2022, 13, 457–593. [Google Scholar] [CrossRef]
- Collados-Lara, A.; Pardo-Igúzquiza, E.; Pulido-Velazquez, D. A distributed cellular automata model to simulate potential future impacts of climate change on snow cover area. Adv. Water Resour. 2019, 124, 106–119. [Google Scholar] [CrossRef]
- Herbert, L. Relations between glacier runoff and meteorological factors observed on and outside the glacier. In International Association of Scientific Hydrology: Commission of Snow and Ice. Reports and Discussion. Rapports Et Discussions; University of Michigan: Ann Arbor, MI, USA, 1968; p. 429. [Google Scholar]
- Zuzel, J.F.; Cox, L.M. Relative importance of meteorological variables in snowmelt. Water Resour. Res. 1975, 11, 174–176. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, P.; Zhang, X. The characteristics of snow cover albedo in Northeast China. J. Glaciol. Geocryol. 2019, 41, 554–562. [Google Scholar]
- Fontaine, T.A.; Cruickshank, T.S.; Arnold, J.G.; Hotchkiss, R.H. Development of a snowfall–Snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 2002, 262, 209–223. [Google Scholar] [CrossRef]
- Anderson, E.A. Development and testing of snow pack energy balance equations. Water Resour. Res. 1968, 4, 19–37. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S.; Yang, J. SWAT-CUP Calibration and Uncertainty Programs for SWAT; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2007; pp. 1596–1602. [Google Scholar]
- Abbaspour, K.C.; Johnson, C.A.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Maraun, D. Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef] [Green Version]
- Durai, V.R.; Bhradwaj, R. Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures. Nat. Hazards 2014, 73, 1229–1254. [Google Scholar] [CrossRef]
- Räty, O.; Räisänen, J.; Ylhäisi, J.S. Evaluation of delta change and bias correction methods for future daily precipitation: Intermodel cross-validation using ENSEMBLES simulations. Clim. Dynam. 2014, 42, 2287–2303. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, A.C.F.; Martins, L.L.; Rudke, A.P.; de Morais, M.V.B.; Martins, J.A.; Blain, G.C. Evaluation of Quantile Delta Mapping as a bias-correction method in maximum rainfall dataset from downscaled models in São Paulo state (Brazil). Int. J. Climatol. 2022, 42, 175–190. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States 1. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Meng, X.; Yu, D.; Liu, Z. Energy balance-based SWAT model to simulate the mountain snowmelt and runoff—Taking the application in Juntanghu watershed (China) as an example. J. Mt. Sci.-Engl. 2015, 12, 368–381. [Google Scholar] [CrossRef]
- Qi, J.; Li, S.; Li, Q.; Xing, Z.; Bourque, C.P.; Meng, F. Assessing an enhanced version of SWAT on water quantity and quality simulation in regions with seasonal snow cover. Water Resour. Manag. 2016, 30, 5021–5037. [Google Scholar] [CrossRef]
- Kustas, W.P.; Rango, A.; Uijlenhoet, R. A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res. 1994, 30, 1515–1527. [Google Scholar] [CrossRef]
- Green, R.O.; Painter, T.H.; Roberts, D.A.; Dozier, J. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Duan, Y.; Meng, F.; Liu, T.; Huang, Y.; Luo, M.; Xing, W.; De Maeyer, P. Sub-Daily Simulation of Mountain Flood Processes Based on the Modified Soil Water Assessment Tool (SWAT) Model. Int. J. Environ. Res. Public Health 2019, 16, 3118. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, T.; Meng, F.; Luo, M.; Frankl, A.; De Maeyer, P.; Bao, A.; Kurban, A.; Feng, X. Inclusion of Modified Snow Melting and Flood Processes in the SWAT Model. Water 2018, 10, 1715. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Liu, T.; Meng, F.; Yuan, Y.; Luo, M.; Huang, Y.; Xing, W.; Nzabarinda, V.; De Maeyer, P. Accurate Simulation of Ice and Snow Runoff for the Mountainous Terrain of the Kunlun Mountains, China. Remote Sens. 2020, 12, 179. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, K.; Rango, A.; Kustas, W. Incorporating radiation inputs into the snowmelt runoff model. Hydrol. Process. 1996, 10, 1329–1343. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Pavlovskii, I.; Cey, E.E.; Hayashi, M. Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils. Hydrol. Earth Syst. Sci. 2019, 23, 5017–5031. [Google Scholar] [CrossRef] [Green Version]
- Kuipers Munneke, P.; Van den Broeke, M.R.; King, J.C.; Gray, T.; Reijmer, C.H. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere 2012, 6, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Pomeroy, J.; Walker, D.; Hoham, R. Snow Ecology; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Yesuf, H.M.; Melesse, A.M.; Zeleke, G.; Alamirew, T. Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environ. Earth Sci. 2016, 75, 806. [Google Scholar] [CrossRef]
- Abbas, T.; Hussain, F.; Nabi, G.; Boota, M.; Wu, R. Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terr. Atmos. Ocean. Sci. 2019, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Khalid, K.; Ali, M.F.; Rahman, N.F.A.; Mispan, M.R.; Haron, S.H.; Othman, Z.; Bachok, M.F. Sensitivity Analysis in Watershed Model Using SUFI-2 Algorithm. Procedia Eng. 2016, 162, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol.-Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Dai, L.; Che, T.; Wang, J.; Zhang, P. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China. Remote Sens. Environ. 2012, 127, 14–29. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, Z.; Yang, Z. Validation of AMSR-E snow depth products in Inner Mongolia. Remote Sens. Appl. 2011, 6, 61–68. [Google Scholar]
- Liu, J.; Li, Z.; Huang, L.; Tian, B. Hemispheric-scale comparison of monthly passive microwave snow water equivalent products. J. Appl. Remote Sens. 2014, 8, 84688. [Google Scholar] [CrossRef] [Green Version]
- Che, T.; Li, X.; Gao, F. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I). J. Glaciol. Geocryol. 2004, 26, 363–368. [Google Scholar]
- Li, D.; Durand, M.; Margulis, S. Potential for hydrologic monitoring of deep mountain snowpack via passive microwave remote sensing: Kern River basin, Sierra Nevada, USA. Remote Sens. Environ. 2010, 125, 34–48. [Google Scholar] [CrossRef]
- Lievens, H.; Demuzere, M.; Marshall, H.; Reichle, R.H.; Brucker, L.; Brangers, I.; de Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, C.A.; Liston, G.E.; Reiners, W.A. Snow Redistribution by Wind and Interactions with Vegetation at Upper Treeline in the Medicine Bow Mountains, Wyoming, USA. Arct. Antarct. Alp. Res. 2002, 34, 262–273. [Google Scholar] [CrossRef]
- Egli, L.; Jonas, T. Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps. Geophys. Res. Lett. 2009, 36, L02501. [Google Scholar] [CrossRef]
Parameter Name | Meaning | Max | Min | SWAT Fitted Value | SWAT+ Fitted Value |
---|---|---|---|---|---|
SFTMP | Snowfall temperature (°C) | 5 | −5 | 0.82 | −0.07 |
ESCO | Soil evaporation compensation factor | 1 | 0.01 | 0.30 | 0.65 |
EPCO | Plant uptake compensation factor | 1 | 0.01 | 0.98 | 0.09 |
CN2 | SCS runoff curve number for moisture condition II | 0.5 | −0.5 | 0.29 | 0.52 |
BIOMIX | Biological mixing efficient | 0.5 | −0.5 | 0.92 | −0.21 |
SOL_Z | Depth from soil surface to bottom of layer (mm) | 0.5 | −0.5 | 0.22 | −0.13 |
SOL_AWC | Available water capacity of the soil layer (mm H2O/mm soil) | 0.5 | −0.5 | 0.68 | 0.64 |
SOL_K | Saturated hydraulic conductivity (mm/h) | 0.8 | −0.8 | 1.13 | 0.09 |
SOL_ALB | Moist soil albedo | 0.5 | −0.5 | 0.01 | −0.09 |
GW_DELAY | Groundwater delay time (days) | 500 | 0 | 431.71 | 111.34 |
ALPHA_BF | Baseflow Alpha Factor | 1 | 0 | 1.69 | 0.47 |
SMTMP | Snow melt base temperature (°C) | 5 | −5 | 0.00 | −1.46 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) | 5000 | 0 | 1380.81 | 7057.22 |
GW_REVAP | Groundwater “revap” coefficient | 0.2 | 0.02 | 0.19 | 0.12 |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur (mm H2O) | 500 | 0 | 106.88 | −21.94 |
CH_N2 | Manning’s “n” value for the main channel | 0.3 | 0 | 0.15 | 0.35 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | 150 | 0 | 145.12 | −46.50 |
RCHRG_DP | Deep aquifer percolation fraction | 1 | 0 | 0.95 | 0.42 |
SMFMX | Melt factor for snow on 21 June (mm H2O/°C-day) | 10 | 0 | 0.36 | 7.73 |
SMFMN | Melt factor for snow on 21 Dec (mm H2O/°C-day) | 10 | 0 | 0.58 | 6.31 |
TIMP | Snow pack temperature lag factor | 1 | 0.01 | 0.50 | 0.13 |
SURLAG | Surface runoff lag coefficient | 24 | 1 | 4.93 | 5.88 |
TLAPS | Temperature lapse rate (°C/km) | 10 | −10 | 4.80 | −1.95 |
SLSUBBSN | Average slope length (m) | 150 | 10 | −7.74 | 15.78 |
CANMX | Maximum canopy storage (mm H2O) | 100 | 0 | −2.37 | −11.74 |
Metrics | Calibration | Validation | ||||
---|---|---|---|---|---|---|
SWAT | SWAT+ | Change | SWAT | SWAT+ | Change | |
MAE | 98.66 | 77.27 | −21.68% | 106.98 | 84.99 | −20.56% |
RE | −32.09 | −20.85 | −35.03% | −343.90 | −23.67 | −93.12% |
RMSE | 155.76 | 117.41 | −24.62% | 144.39 | 121.05 | −16.16% |
NSE | 0.55 | 0.74 | 0.19 | 0.47 | 0.63 | 0.16 |
R2 | 0.63 | 0.78 | 0.15 | 0.63 | 0.70 | 0.07 |
Baseline | SSP2.6 | SSP4.6 | SSP8.5 | ||||
---|---|---|---|---|---|---|---|
Projections | Change | Projections | Change | Projections | Change | ||
T | 1.05 °C | 2.53 °C | 1.48 °C | 3.22 °C | 2.17 °C | 4.07 °C | 3.02 °C |
P | 66.14 mm | 75.82 mm | 14.64% | 72.29 mm | 9.29% | 78.89 mm | 19.28% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Li, H.; Xuan, Y.; Li, C.; Ni, H. Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data. Remote Sens. 2022, 14, 5823. https://doi.org/10.3390/rs14225823
Zhao H, Li H, Xuan Y, Li C, Ni H. Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data. Remote Sensing. 2022; 14(22):5823. https://doi.org/10.3390/rs14225823
Chicago/Turabian StyleZhao, Hongling, Hongyan Li, Yunqing Xuan, Changhai Li, and Heshan Ni. 2022. "Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data" Remote Sensing 14, no. 22: 5823. https://doi.org/10.3390/rs14225823
APA StyleZhao, H., Li, H., Xuan, Y., Li, C., & Ni, H. (2022). Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data. Remote Sensing, 14(22), 5823. https://doi.org/10.3390/rs14225823