A Review of Artificial Intelligence and Remote Sensing for Archaeological Research
Abstract
:1. Introduction
2. Archaeological Surface Survey
2.1. Systematic Surface Surveys
2.2. Applications of Systematic Surface Surveys
3. Remote Sensing in Archaeology
3.1. Literature Growth
3.2. Remote Sensing Platforms
3.2.1. Ground-Borne Platforms
3.2.2. Air-Borne Platforms
3.2.3. Space-Based Platforms
4. Artificial Intelligence in Archaeology
4.1. Key Components of AI
- Machine learning: allows software applications to become more accurate at predicting outcomes without the requirement for explicit programming.
- Deep learning: a subset of ML that learns by processing data based on artificial neural networks with representation learning.
- Neural network: NN mimics the way the human brain operates with a series of algorithms that endeavors to recognize underlying relationships in a set of data.
- Natural language processing (NLP) is a subfield of computer science and artificial intelligence concerned with the recognition, interpretation, and production of human language and speech.
- Computer vision: a subset of machine learning and pattern identification that enables computers to interpret image content based on graphs, tables, PDF pictures, and videos.
- Cognitive computing: this is related to technology platforms that attempt to mimic the way a human brain works.
4.2. Applications of AI and Remote Sensing for Archaeological Research
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orengo, H.A.; Garcia-Molsosa, A. A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery. J. Archaeol. Sci. 2019, 112, 105013. [Google Scholar] [CrossRef]
- Renfrew, C.; Bahn, P. Chapter 2, What is Left? The Variety of the Evidence. In Archaeology, Theories, Methods and Practice; Thames and Hudson Ltd.: London, UK, 1991. [Google Scholar]
- Alcock, S.E.; Cherry, J.F. Introduction. In Side-By-Side Survey. Comparative Regional Studies in the Mediterranean World; Alcock, S.E., Cherry, J.F., Eds.; Oxbow Books: Oxford, UK, 2004; pp. 1–9. [Google Scholar]
- De Laet, V.; Paulissen, E.; Waelkens, M. Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). J. Archaeol. Sci. 2007, 34, 830–841. [Google Scholar] [CrossRef]
- Barone, P.M.; Wueste, E.; Hodges, R. Remote Sensing Materials for a Preliminary Archaeological Evaluation of the Giove Countryside (Terni, Italy). Remote Sens. 2020, 12, 2023. [Google Scholar] [CrossRef]
- Tapete, D. Remote Sensing and Geosciences for Archaeology. Geosciences 2018, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Masini, N. Satellite remote sensing in archaeology: Past, present and future perspectives. J. Archaeol. Sci. 2011, 38, 1995–2002. [Google Scholar] [CrossRef]
- Materazzi, F.; Pacifici, M. Archaeological crop marks detection through drone multispectral remote sensing and vegetation indices: A new approach tested on the Italian pre-Roman city of Veii. J. Archaeol. Sci. Rep. 2022, 41, 103235. [Google Scholar] [CrossRef]
- Czajlik, Z.; Črešnar, M.; Doneus, M.; Fera, M.; Kramberger, A.H.; Mele, M. Researching archaeological landscapes across borders Strategies, methods and decisions for the 21st century Graz—Budapest, 2019. Diss. Archaeol. 2020, pp. 299–301. Available online: https://www.academia.edu/40373820 (accessed on 29 August 2022).
- Hadjimitsis, D.G.; Agapiou, A.; Themistocleous, K.; Alexakis, D.D.; Sarris, A. Remote Sensing for Archaeological Applications: Management, Documentation and Monitoring. Remote Sens. Environ. Integr. Approaches 2013, 2013, 57–95. [Google Scholar] [CrossRef] [Green Version]
- Fountas, S.; Gemtos, T. Γεωργία Aκριβείας [Undergraduate Textbook; Kallipos, Open Academic Editions: Athens, Greece, 2015; Available online: http://hdl.handle.net/11419/2670 (accessed on 7 September 2022).
- Fischer, W.A.; Hemphill, W.R.; Kover, A. Progress in remote sensing (1972–1976). Photogrammetria 1976, 32, 33–72. [Google Scholar] [CrossRef]
- Davis, D.S.; Seeber, K.E.; Sanger, M.C. Addressing the problem of disappearing cultural landscapes in archaeological research using multi-scalar survey. J. Isl. Coast. Archaeol. 2021, 16, 524–540. [Google Scholar] [CrossRef]
- Agapiou, A.; Sarris, A. Beyond GIS Layering: Challenging the (Re)use and Fusion of Archaeological Prospection Data Based on Bayesian Neural Networks (BNN). Remote Sens. 2018, 10, 1762. [Google Scholar] [CrossRef]
- Gallwey, J.; Eyre, M.; Tonkins, M.; Coggan, J. Bringing lunar LiDAR back down to earth: Mapping our industrial heritage through deep transfer learning. Remote Sens. 2019, 11, 1994. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Davis, D.S. Geographic disparity in machine intelligence approaches for archaeological remote sensing research. Remote Sens. 2020, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- Sarris, A.; Kokkinou, E.; Soupios, P.; Papadopoulos, E.; Trigas, V.; Sepsa, O.; Gionis, D.; Iakovou, M.; Agapiou, A.; Satraki, A.; et al. Geophysical investigations in Palaipafos, Cyprus, 36th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, CAA, 2008 “On the Road to Reconstructing the Past”. Budapest 2008, in press. [Google Scholar]
- Bicker, S.H. Machine Learning Arrives in Archaeology. Camb. Univ. Press Behalf Soc. Am. Archaeol. 2021, 6, 186–191. [Google Scholar] [CrossRef]
- Bini, M.; Isola, I.; Zanchetta, G.; Ribolini, A.; Ciampalini, A.; Baneschi, I.; Mele, D.; D’Agata, A.L. Identification of leveled archeological mounds (Höyük) in the alluvial plain of the Ceyhan River (Southern Turkey) by satellite remote-sensing analyses. Remote Sens. 2018, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.S.; Sanger, M.C.; Lipo, C.P. Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeast. Archaeol. 2019, 38, 23–37. Available online: http://www.tandfonline.com/10.1080/0734578X.2018.1482186 (accessed on 30 August 2022). [CrossRef]
- Verschoof-van der Vaart, W.B.; Lambers, K. Applying automated object detection in archaeological practice: A case study from the southern Netherlands. Archaeol. Prospect. 2021, 29, 15–31. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/arp.1833 (accessed on 17 August 2022). [CrossRef]
- Albrecht, C.M.; Fisher, C.; Freitag, M.; Hamann, H.F.; Pankanti, S.; Pezzutti, F.; Rossi, F. Learning and Recognizing Archeological Features from LiDAR Data. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019. [Google Scholar] [CrossRef] [Green Version]
- Orengo, H.A.; Garcia-Molsosa, A.; Berganzo-Besga, I.; Landauer, J.; Aliende, P.; Tres-Martínez, S. New developments in drone-based automated surface survey: Towards a functional and effective survey system. Archaeol. Prospect. 2021, 28, 519–526. [Google Scholar] [CrossRef]
- Snitker, G.; Moser, J.D.; Southerlin, B.; Stewart, C. Detecting historic tar kilns and tar production sites using high-resolution, aerial LiDAR-derived digital elevation models: Introducing the Tar KilnFeature Detection workflow (TKFD) using open-access R and FIJI software. J. Archaeol. Sci. Rep. 2022, 41, 103340. [Google Scholar] [CrossRef]
- Borie, C.; Parcero-Oubiña, C.; Kwon, Y.; Salazar, D.; Flores, C.; Olguín, L.; Andrade, P. Beyond site detection: The role of satellite remote sensing in analysing archaeological problems. A case study in Lithic Resource Procurement in the Atacama Desert, Northern Chile. Remote Sens. 2019, 11, 869. [Google Scholar] [CrossRef]
- Davis, D.S. Object-Based Image Analysis: A Review of Developments and Future Directions of Automated Feature Detection in Landscape Archaeology. Archaeol. Prospect. 2018, 26, 155–163. [Google Scholar] [CrossRef]
- Monna, F.; Magail, J.; Rolland, T.; Navarro, N.; Wilczek, J.; Gantulga, J.O.; Esin, Y.; Granjon, L.; Allard, A.C.; Chateau-Smith, C. Machine learning for rapid mapping of archaeological structures made of dry stones–Example of burial monuments from the Khirgisuur culture, Mongolia. J. Cult. Herit. 2020, 43, 118–128. [Google Scholar] [CrossRef]
- Thabeng, O.L.; Merlo, S.; Adam, E. High-Resolution Remote Sensing and Advanced Classification Techniques for the Prospection of Archaeological Sites’ Markers: The Case of Dung Deposits in the Shashi-Limpopo Confluence Area (Southern Africa). J. Archaeol. Sci. 2019, 102, 48–60. [Google Scholar] [CrossRef]
- Inomata, T.; Pinzón, F.; Ranchos, J.; Haraguchi, T.; Nasu, H.; Fernandez-Diaz, J.; Aoyama, K.; Yonenobu, H. Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site. Remote Sens. 2017, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Cowley, D.; Verhoeven, G.; Traviglia, A. Editorial for Special Issue: “Archaeological Remote Sensing in the 21st Century: (Re)Defining Practice and Theory”. Remote Sens. 2021, 13, 1431. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shia, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Verhoeven, G.J. Are We There Yet? A Review and Assessment of Archaeological Passive Airborne Optical Imaging Approaches in the Light of Landscape Archaeology. Geosciences 2017, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Hritz, C. Tracing settlement patterns and channel systems in southern Mesopotamia using remote sensing. J. Field Archaeol. 2010, 35, 184–203. [Google Scholar] [CrossRef]
- Abate, N.; Frisetti, A.; Marazzi, F.; Masini, N.; Lasaponara, R. Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy). Remote Sens. 2021, 13, 2719. [Google Scholar] [CrossRef]
- Aqdus, S.A.; Hanson, W.S.; Drummond, J. The potential of hyperspectral and multi-spectral imagery to enhance ar-chaeological cropmark detection: A comparative study. J. Archaeol. Sci. 2012, 39, 1915–1924. [Google Scholar] [CrossRef]
- Abrams, M.; Comer, D. Multispectral and hyperspectral technology and archaeological applications. In Mapping Archaeological Landscapes from Space; Springer: New York, NY, USA, 2013; pp. 57–71. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.G.; Sarris, A.; Georgopoulos, A.; Alexakis, D.D. Optimum temporal and spectral window for monitoring crop marks over archaeological remains in the Mediterranean region. J. Archaeol. Sci. 2013, 40, 1479–1492. [Google Scholar] [CrossRef]
- Geser, G. Impact of COVID-19 on Archaeology and Cultural Heritage. Salzburg Research 29 October 2021. Available online: https://ariadne-infrastructure.eu/wp-content/uploads/2021/11/COVID-19_impact-archaeology-and-cultural-heritage_29Oct2021.pdf (accessed on 20 August 2022).
- Fitton, T.; Wynne-Jones, S. Integrating legacy data for archaeological and remote survey at the 7–15th century site of Unguja Ukuu, Zanzibar. In Proceedings of the CAA 2021, Programme and Abstracts, Limassol, Cyprus (gone virtual), 14–18 June 2021; pp. 534–535. Available online: https://2021.caaconference.org/wpcontent/uploads/sites/28/2021/06/CAA2021_Detailed-Programme_16June.pdf (accessed on 1 September 2022).
- Budka, J. Archaeological Team Building in Times of COVID-19. Munich University Attab to Ferka Survey Project Blog. 20 July 2020. Available online: https://www.sudansurvey.gwi.unimuenchen.de/index.php/tag/digital-archaeology/ (accessed on 27 September 2022).
- Agapiou, A.; Lysandrou, V. Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from 1999 to 2015. J. Archaeol. Sci. 2015, 4, 192–200. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.; Sarris, A.; Hadjimitsis, D.G. Evaluating the Potentials of Sentinel-2 for Archaeological Perspective. Remote Sens. 2014, 6, 2176–2194. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.; Sarris, A.; Astaras, T.; Albanakis, K. Integrated GIS, remote sensing and geo-morphologic approaches for the reconstruction of the landscape habitation of Thessaly during the neolithic period. J. Archaeol. Sci. 2011, 38, 89–100. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Agapiou, A.; Alexakis, D.D.; Sarris, A. Exploring natural and anthropogenic risk for cultural heritage in Cyprus using remote sensing and GIS August 2011. Int. J. Digit. Earth 2013, 6, 115–142. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Themistocleous, K.; Agapiou, A.; Clayton, C.R.I. Multi-temporal study of archaeological sites in Cyprus using atmospheric corrected satellite remotely sensed data. Int. J. Archit. Comput. 2009, 7, 121–138. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Liu, J.; Guo, H.; Zong, X.; Ji, W.; Cao, H. VHR GeoEye-1 imagery reveals an ancient water landscape at the Longcheng site, northern Chaohu Lake Basin (China). Int. J. Digit. Earth 2016, 10, 139–154. [Google Scholar] [CrossRef]
- Brivio, P.A.; Pepe, M.; Tomasoni, R. Multispectral and multiscale remote sensing data for archaeological prospecting in an alpine alluvial plain. J. Cult. Herit. 2000, 1, 155–164. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Samani, F. Identifying the boundaries of the historical site of Persepolis using remote sensing. Remote Sens. Environ. 2006, 102, 52–62. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite Quick Bird multispectral imagery. J. Archaeol. Sci. 2007, 34, 214–221. [Google Scholar] [CrossRef]
- Evans, D.; Pottier, C.; Fletcher, R.; Hensley, S.; Tapley, I.; Milne, A.; Barbetti, M. A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proc. Natl. Acad. Sci. USA 2007, 104, 14277–14282. Available online: www.pnas.org/cgi/doi/10.1073pnas.0702525104 (accessed on 8 July 2022). [CrossRef] [Green Version]
- Garrison, T.G.; Houston, S.D.; Golden, C.; Inomata, T.; Nelson, Z.; Munson, J. Evaluating the use of IKONOS satellite imagery in lowland Maya settlement archaeology. J. Archaeol. Sci. 2008, 35, 2770–2777. [Google Scholar] [CrossRef]
- Alexakis, D.; Sarris, A.; Astaras, T.; Albanakis, K. Detection of Neolithic settlements in Thessaly (Greece) through multispectral and hyperspectral satellite imagery. Sensors 2009, 9, 1167–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajani, M.B.; Rajawat, A.S. Potential of satellite-based sensors for studying distribution of archaeological sites along palaeochannels: Harappan sites a case study. J. Archaeol. Sci. 2011, 38, 2010–2016. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks. Int. J. Digit. Earth 2014, 7, 351–372. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Liu, C.; Guo, H.; Du, X. Integrated RS, GIS and GPS approaches to archaeological prospecting in the Hexi Corridor, NW China: A case study of the royal road to ancient Dunhuang. J. Archaeol. Sci. 2014, 50, 178–190. [Google Scholar] [CrossRef]
- Kalayci, T.; Lasaponara, R.; Wainwright, J.; Masini, N. Multispectral Contrast of Archaeological Features: A Quantitative Evaluation. Remote Sens. 2019, 11, 913. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Leucci, G.; Masini, N.; Persico, R.; Scardozzi, G. Towards an operative use of remote sensing for exploring the past using satellite data: The case study of Hierapolis (Turkey). Remote Sens. Environ. 2016, 174, 148–164. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Wess, M.; Doneus, M.; Verhoeven, G. ARCTIS—A MATLAB® Toolbox for archaeological imaging spectroscopy. Remote Sens. 2014, 6, 8617–8638. [Google Scholar] [CrossRef]
- Doneus, M.; Verhoeven, G.; Atzberger, C.; Wess, M.; Ruš, M. New ways to extract archaeological information from hyperspectral pixels. J. Archaeol. Sci. 2014, 52, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.; Freeman, T.; Hensley, S. Spaceborne and airborne radar at Angkor: Introducing new technology to the ancient site. In Remote Sensing in Archaeology; Wiseman, J., El-Baz, F., Eds.; Springer: New York, NY, USA, 2007; pp. 185–216. [Google Scholar]
- Dore, N.; Patruno, J.; Pottier, E.; Crespi, M. New research in polarimetric SAR technique for archaeological purposes using ALOS PALSAR data. Archaeol. Prospect. 2013, 20, 79–87. [Google Scholar] [CrossRef]
- Stewart, C.; Lasaponara, R.; Schiavon, G. Multi-frequency, polarimetric SAR analysis for archaeological prospection. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 211–219. [Google Scholar] [CrossRef]
- Chen, F.; Masini, N.; Yang, R.; Milillo, P.; Feng, D.; Lasaponara, R. A space view of radar archaeological marks: First applications of COSMO-SkyMed X-Band Data. Remote Sens. 2015, 7, 24–50. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Cigna, F.; Donoghue, D. ‘Looting marks’ in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sens. Environ. 2016, 178, 42–58. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.; Montanaro, R.; Sala, M.; Riccardi, P. Feature extraction in the north Sinai Desert using spaceborne synthetic aperture radar: Potential archaeological applications. Remote Sens. 2016, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Challis, K.; Howard, A.J. A review of trends within archaeological remote sensing in alluvial environments. Archaeol. Prospect. 2006, 13, 231–240. [Google Scholar] [CrossRef]
- Chen, F.; Lasaponara, R.; Masini, N. An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. J. Cult. Herit. 2017, 23, 5–11. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. J. Archaeol. Sci. Rep. 2017, 14, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Punnee, W.-A. An archaeological application of synthetic aperture radar (SAR) in Thailand. Geocarto Int. 1995, 10, 65–69. [Google Scholar] [CrossRef]
- Gade, M.; Kohlus, J.; Kost, C. SAR Imaging of Archaeological Sites on Intertidal Flats in the German Wadden Sea. Geosciences 2017, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Kadhim, I.; Abed, F.M. The Potential of LiDAR and UAV-Photogrammetric Data Analysis to Interpret Archaeological Sites: A Case Study of Chun Castle in South-West England. Int. J. Geo.-Inf. 2021, 10, 41. [Google Scholar] [CrossRef]
- Traviglia, A.; Torsello, A. Landscape Pattern Detection in Archaeological Remote Sensing. Geosciences 2017, 7, 128. [Google Scholar] [CrossRef] [Green Version]
- Trier, Ø.D.; Cowley, D.C.; Waldeland, A.U. Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Agapiou, A.; Vionis, A.; Papantoniou, G. Detection of Archaeological Surface Ceramics Using Deep Learning Image-Based Methods and very High-Resolution UAV Imageries. Land 2021, 10, 1365. [Google Scholar] [CrossRef]
- Altaweel, M.; Khelifi, A.; Li, Z.; Squitieri, A.; Basmaji, T.; Ghazal, M. Automated Archaeological Feature Detection Using Deep Learning on Optical UAV Imagery: Preliminary Results. Remote Sens. 2022, 14, 553. [Google Scholar] [CrossRef]
- Bickler, S.H. Machine Learning Identification and Classification of Historic Ceramics. Archaeology in New Zealand. Res. Gate 2018, 61, 20–32. Available online: https://www.researchgate.net/publication/323302055 (accessed on 27 July 2022).
- Bickler, S.H. Prospects for Machine Learning for Shell Midden Analysis. Archaeology in New Zealand. Res. Gate 2018, 61, 48–58. Available online: https://www.researchgate.net/publication/323468156 (accessed on 22 August 2022).
- Verschoof-van der Vaart, W.B.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. J. Comput. Appl. Archaeol. 2019, 2, 31–40. Available online: https://www.researchgate.net/publication/331874666 (accessed on 12 July 2022). [CrossRef] [Green Version]
- Reese, K.M. Deep learning artificial neural networks for non-destructive archaeological site dating. J. Archaeol. Sci. 2021, 132, 105413. [Google Scholar] [CrossRef]
- Bonhage, A.; Eltaher, M.; Raab, T.; Breuß, M.; Raab, A.; Schneider, A. A modified Mask region-based convolutional neural network approach for the automated detection of archaeological sites on high-resolution light detection and ranging-derived digital elevation models in the North German Lowland. Archaeol. Prospect. 2021, 28, 177–186. [Google Scholar] [CrossRef]
- Pawlowicz, L.M.; Downum, C.E. Applications of deep learning to decorated ceramic typology and classification: A case study using Tusayan White Ware from Northeast Arizona. J. Archaeol. Sci. 2021, 130, 105375. [Google Scholar] [CrossRef]
- Davis, D.S. Defining what we study: The contribution of machine automation in archaeological research. Digit. Appl. Archaeol. Cult. Herit. 2020, 18, e00152. [Google Scholar] [CrossRef]
- Olivier, M.; Verschoofvan der Vaart, W. Implementing State of-the-Art Deep Learning Approaches for Archaeological Object Detection in Remotely—Sensed Data: The Results of Cross-Domain Collaboration. J. Comput. Appl. Archaeol. 2021, 4, 274–289. [Google Scholar] [CrossRef]
- Richards-Rissettoa, F.; Newtonb, D.; Al Zadjalic, A. A 3D point cloud Deep Learning approach using Lidar to identify ancient Maya archaeological sites. In Proceedings of the 28th CIPA Symposium “Great Learning & Digital Emotion”, Beijing, China, 28 August–1 September 2021. [Google Scholar]
- Berganzo-Besga, I.; Orengo, H.A.; Lumbreras, F.; Carrero-Pazos, M.; Fonte, J.; Vilas-Estévez, B. Hybrid MSRM-Based Deep Learning and MultitemporalSentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia. Remote Sens. 2021, 13, 4181. [Google Scholar] [CrossRef]
- Verschoof-van der Vaart, W.B.; Lambers, K.; Kowalczyk, W.; Bourgeois, Q.P. Combining Deep Learning and Location-Based Ranking for Large-Scale Archaeological Prospection of LiDAR Data from The Netherlands. ISPRS Int. J. Geo.-Inf. 2020, 9, 293. [Google Scholar] [CrossRef]
- Trier, V.D.; Reksten, J.H.; Løseth, K. Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102241. [Google Scholar] [CrossRef]
- Somrak, M.; Sašo Džeroski, S.; Kokalj, Z. Learning to Classify Structures in ALS-Derived Visualizations of Ancient Maya Settlements with CNN. Remote Sens. 2020, 12, 2215. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Pourmohammadi, P.; Poyner, J.D. Mapping the Topographic Features of Mining-Related Valley Fills Using Mask R-CNN Deep Learning and Digital Elevation Data. Remote Sens. 2020, 12, 547. [Google Scholar] [CrossRef] [Green Version]
- Martin-Abadal, M.; Piñar-Molina, M.; Martorell-Torres, A.; Oliver-Codina, G.; Gonzalez-Cid, Y. Underwater Pipe and Valve 3D Recognition Using Deep Learning Segmentation. J. Mar. Sci. Eng. 2021, 9, 5. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.; Ma, L.; Li, M.; Johnson, B.A. Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery. J. Appl. Remote Sens. 2018, 12, 025010. [Google Scholar] [CrossRef]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting neolithic burial mounds from lidar derived elevation data using a multi-scale approach and machine learning techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Domínguez Rodrigo, M.; Cifuentes Alcobendas, G.; Jiménez García, B.; Abellán, N.; Pizarro Monzo, M.; Organista, E.; Baquedano, E. Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications. Sci. Rep. 2020, 10, 18862. [Google Scholar] [CrossRef]
- Caspari, G.; Crespo, P. Convolutional Neural Networks for Archaeological Site Detection—Finding “Princely” Tombs. J. Archaeol. Sci. 2019, 110, 104998. [Google Scholar] [CrossRef]
- Jamil, A.H.; Yakub, F.; Azizul Azizan, A.; Roslan, S.A.; Zaki, S.A.; Ahmad, S.A. A Review on Deep Learning Application for Detection of Archaeological Structures. J. Adv. Res. Appl. Sci. Eng. Technol. 2022, 26, 7–14. [Google Scholar] [CrossRef]
- Mitchell, M. Complexity. A Guided Tour; Oxford Press: Oxford, UK; New York, NY, USA, 2009; pp. 186–208. [Google Scholar]
- Casini, L.; Roccetti, M.; Delnevo, G.; Marchetti, N.; Orrù, V. The Barrier of meaning in archaeological data science. In Proceedings of the SCIFI-IT’ 2020—4th Annual Science Fiction Prototyping Conference, Ghent, Belgium, 23–25 March 2020; pp. 61–65. [Google Scholar]
- Sharafi, S.; Fouladvand, S.; Simpson, I.; Alvarez, J.A.B. Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran. J. Archaeol. Sci. Rep. 2016, 8, 206–215. [Google Scholar] [CrossRef]
- Mehrnoush, S.; Mehrtash, A.; Khazraee, E.; Ur, J. Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. Remote Sens. 2020, 12, 500. [Google Scholar] [CrossRef] [Green Version]
- Bundzel, M.; Jašcur, M.; Kovác, M.; Lieskovský, T.; Sincák, P.; Tkácik, T. Semantic Segmentation of Airborne LiDAR Data in Maya Archaeology. Remote Sens. 2020, 12, 3685. [Google Scholar] [CrossRef]
- Orengo, H.A.; Conesa, F.C.; Garcia-Molsosa, A.; Lobo, A.; Green, A.S.; Madella, M.; Petrie, C.A. Automated detection of archaeological mounds using machine learning classification of multi-sensor and multi-temporal satellite data. Proc. Natl. Acad. Sci. USA 2020, 117, 18240–18250. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.S.; Gaspari, G.; Lipo, C.P.; Sanger, M.C. Deep learning reveals extent of Archaic Native American shell-ring building.practices. J. Archaeoogical Sci. 2021, 132, 105433. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Huadong Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; et al. Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review. Remote Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Barber, M. A History of Aerial Photography and Archaeology. Mata Hari’s Glass Eye and Other Stories. In A History of Aerial Photography and Archaeology; English Heritage: Swindon, UK, 2011. [Google Scholar]
- Hutson, M. Has artificial intelligence become alchemy? Science 2018, 360, 478. [Google Scholar] [CrossRef] [PubMed]
- Cassar, J. Chapter: Climate change and archaeological sites: Adaptation strategies. In Cultural Heritage from Pollution to Climate Change; Lefevre, R.-A., Sabbioni, C., Eds.; Edipuglia: Bari, Italy, 2016. [Google Scholar]
- Burkea, A.; Peros, M.C.; Wren, C.D.; Pausata, F.S.R.; Riel-Salvatore, J.; Moine, O.; Vernal, A.; Kageyama, M.; Solène Boisard, S. The archaeology of climate change: The case for cultural diversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2108537118. [Google Scholar] [CrossRef]
No | Vegetation Index | Equation |
---|---|---|
1 | NDVI (Normalized Difference Vegetation Index) | (pNIR − pred)/(pNIR + pred) |
2 | RDVI (Renormalized Difference Vegetation Index) | (pNIR − pred)/(pNIR + pred)1/2 |
3 | IRG (Red Green Ratio Index) | pRed − Pgreen |
4 | PVI (Perpendicular Vegetation Index) | (pNIR − α pred − b)/(1 + α2) pNIR, soil = α pred, soil + b |
5 | RVI (Ratio Vegetation Index) | pred/pNIR |
6 | TSAVI (Transformed Soil Adjusted Vegetation Index) | [α(pNIR − α pNIR − b)]/[(pred + α pNIR − αb + 0.08(1 + α2))] |
pNIR, soil = α pred, soil + b |
Satellite Sensors | Spectra Bands | Spatial Resolution (m) | Radiometric Resolution (bit) |
---|---|---|---|
ETM+/Landsat 7 | Pan | 15 | 8 |
B1–B5, B7 | 30 | ||
B6 | 60 | ||
HRV/SPOT5 | Pan | 2.5 or 5 | 8 |
B1–B3 | 10 | ||
SW-IR | 20 | ||
MODIS | B1–B2 | 250 | 12 |
B3–B7 | 500 | ||
B8–B36 | 1000 | ||
AVHRR | B1–B5 | 1100 at nadir | 10 |
Ikonos | Panchromatic band | 0.82 at nadir | 11 |
B1–B4 | 3.2 at nadir | ||
Quickbird | Pan | 0.61 | 11 |
B1–B4 | 2.44 | ||
Geoeye-1 | Pan | 1.41 at nadir | 11 |
B1–B4 | 1.65 at nadir |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyrou, A.; Agapiou, A. A Review of Artificial Intelligence and Remote Sensing for Archaeological Research. Remote Sens. 2022, 14, 6000. https://doi.org/10.3390/rs14236000
Argyrou A, Agapiou A. A Review of Artificial Intelligence and Remote Sensing for Archaeological Research. Remote Sensing. 2022; 14(23):6000. https://doi.org/10.3390/rs14236000
Chicago/Turabian StyleArgyrou, Argyro, and Athos Agapiou. 2022. "A Review of Artificial Intelligence and Remote Sensing for Archaeological Research" Remote Sensing 14, no. 23: 6000. https://doi.org/10.3390/rs14236000
APA StyleArgyrou, A., & Agapiou, A. (2022). A Review of Artificial Intelligence and Remote Sensing for Archaeological Research. Remote Sensing, 14(23), 6000. https://doi.org/10.3390/rs14236000