Using Hyperspatial LiDAR and Multispectral Imaging to Identify Coastal Wetlands Using Gradient Boosting Methods
Abstract
:1. Introduction
- (1)
- Explore the effectiveness of different Gradient Boosting models used on LiDAR and Multispectral data for identifying wetland and non-wetland classes across multiple sites.
- (2)
- Determine the best variables to classify wetlands using Gradient Boosting.
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection and Preprocessing
2.3. Gradient Boosting Classification
3. Results
3.1. Individual Sites
3.2. Model Performance on Pooled Data with All Sites
3.3. Model Performance on Pooled Data with Leave-One-Site-Out Scheme
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahl, T.E. Wetlands Losses in the United States 1780’s to 1980’s; U.S. Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1990; p. 13. Available online: http://www.fws.gov/wetlands/Documents/Wetlands-Losses-in-the-United-States-1780s-to-1980s.pdf (accessed on 30 September 2022).
- Davidson, N.C. Wetland Losses and the Status of Wetland-Dependent Species. In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2016; (accessed on 30 September 2022). [Google Scholar] [CrossRef]
- Novoa, V.; Rojas, O.; Ahumada-Rudolph, R.; Sáez, K.; Fierro, P.; Rojas, C. Coastal wetlands: Ecosystems affected by urbanization? Water 2020, 12, 698. [Google Scholar] [CrossRef] [Green Version]
- Bullock, A.; Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Heimlich, R.E. Wetlands and Agriculture: Private Interests and Public Benefits; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 1998; p. 765. [Google Scholar]
- National Research Council. Compensating for Wetland Losses under the Clean Water Act; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Wilen, B.O.; Bates, M.K. The US fish and wildlife service’s national wetlands inventory project. In Classification and Inventory of the World’s Wetlands; Springer: Dordrecht, The Netherlands, 1995; pp. 153–169. [Google Scholar]
- Gale, S. National Wetlands Inventory (Nwi) Accuracy in North Carolina; USEPA: Washington, DC, USA, 2021; Available online: https://www.ncwetlands.org/wp-content/uploads/NWI_Accuracy_In_NC_NCDWR-Final_Report_8-10-2021.pdf (accessed on 30 September 2022).
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive review. GIScience Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Cowardin, L.M.; Carter, V.; Golet, F.; LaRoe, E. Classification of Wetlands and Deepwater Habitats of the United States; US Department of the Interior: Fish and Wildlife Service: Washington, DC, USA, 1979. Available online: https://www.fws.gov/wetlands/documents/classification-of-wetlands-and-deepwater-habitats-of-the-united-states.pdf (accessed on 30 September 2022).
- Racey, G.; Harris, A.; Jeglum, J.; Foster, R.; Wickware, G. Terrestrial and Wetland Ecosites of Northwestern Ontario. In Thunder Bay: Northwest Science and Technology; Ontario Ministry of Natural Resources: Peterborough, ON, Canada, 1996. [Google Scholar]
- Tiner, R.W. Wetland Indicators: A Guide to Wetland Identification, Delineation, Classification, and Mapping; CRC Press: Baco Raton, FL, USA, 1999. [Google Scholar]
- Belluco, E.; Camuffo, M.; Ferrari, S.; Modenese, L.; Silvestri, S.; Marani, A.; Marani, M. Mapping Salt-Marsh Vegetation by Multispectral and Hyperspectral Remote Sensing. Remote Sens. Environ. 2006, 105, 54–67. [Google Scholar] [CrossRef]
- Dronova, I. Object-Based Image Analysis in Wetland Research: A Review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Kim, H.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef] [Green Version]
- Glanz, H.; Carvalho, L.; Sulla-Menashe, D.; Friedl, M.A. A parametric model for classifying land cover and evaluating training data based on multi-temporal remote sensing data. ISPRS J. Photogramm. Remote Sens. 2014, 97, 219–228. [Google Scholar] [CrossRef]
- Gosselin, G.; Touzi, R.; Cavayas, F. Polarimetric Radarsat-2 wetland classification using the Touzi decomposition: Case of the Lac Saint-Pierre Ramsar wetland. Can. J. Remote Sens. 2014, 39, 491–506. [Google Scholar] [CrossRef]
- Szantoi, Z.; Escobedo, F.J.; Abd-Elrahman, A.; Pearlstine, L.; Dewitt, B.; Smith, S. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environ. Monit. Assess. 2015, 187, 1–15. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, L.; Chen, Z.; Zhang, B.; Liao, W.; Yang, X. An entropy and MRF model-based CNN for large-scale landsat image classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1145–1149. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Z. A survey of recent work on fine-grained image classification techniques. J. Vis. Commun. Image Represent. 2019, 59, 210–214. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, P.; Zhang, Q.; Wang, J. Improving wetland cover classification using artificial neural networks with ensemble techniques. GIScience Remote Sens. 2021, 58, 603–623. [Google Scholar] [CrossRef]
- Nogueira, K.; Penatti, O.A.B.; Santos, J.A. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Object-based wetland characterization using radarsat-2 quad-polarimetric SAR data, landsat-8 OLI imagery, and airborne lidar-derived geomorphometric variables. Photogramm. Eng. Remote Sens. 2017, 83, 27–36. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Zhang, Y.; Fei, X.; Chen, Z.; Wang, J.; Zhang, Y.; Lu, X.; Zhao, H. Land-cover classification of coastal wetlands using the RF algorithm for Worldview-2 and Landsat 8 images. Remote Sens. 2019, 11, 1927. [Google Scholar] [CrossRef] [Green Version]
- Dubeau, P.; King, D.J.; Unbushe, D.G.; Rebelo, L. Mapping the Dabus Wetlands, Ethiopia, using random forest classification of Landsat, PALSAR and topographic data. Remote Sens. 2017, 9, 1056. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.; Bunn, A.; Powell, S.; Zambon, M. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens. Environ. 2004, 90, 331–336. [Google Scholar] [CrossRef]
- Zhang, H.; Eziz, A.; Xiao, J.; Tao, S.; Wang, S.; Tang, Z.; Zhu, J.; Fang, J. High-resolution vegetation mapping using eXtreme gradient boosting based on extensive features. Remote Sens. 2019, 11, 1505. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, P.; Liu, H.; Fan, P.; Zeng, P.; Liu, X.; Feng, C.; Wang, W.; Yang, F. Gradient Boosting Estimation of the Leaf Area Index of Apple Orchards in UAV Remote Sensing. Remote Sens. 2021, 13, 3263. [Google Scholar] [CrossRef]
- Ghatkar, J.G.; Singh, R.K.; Shanmugam, P. Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model. Int. J. Remote Sens. 2019, 40, 9412–9438. [Google Scholar] [CrossRef]
- Chan, J.C.; Huang, C.; Defries, R. Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting. IEEE Trans. Geosci. Remote Sens. 2001, 39, 693–695. [Google Scholar]
- Wen, L.; Hughes, M. Coastal wetland mapping using ensemble learning algorithms: A comparative study of bagging, boosting and stacking techniques. Remote Sens. 2020, 12, 1683. [Google Scholar] [CrossRef]
- Sánchez-Espinosa, A.; Schröder, C. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. J. Environ. Manag. 2019, 247, 484–498. [Google Scholar] [CrossRef]
- MultiSpectral Instrument (MSI). Sentinel Online. 2022. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/instrument-payload/ (accessed on 30 September 2022).
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Windle, A.E.; Silsbe, G.M. Evaluation of Unoccupied Aircraft System (UAS) Remote Sensing Reflectance Retrievals for Water Quality Monitoring in Coastal Waters. Front. Environ. Sci. 2021, 9, 674247. [Google Scholar] [CrossRef]
- Jeziorska, J. UAS for Wetland Mapping and Hydrological Modeling. Remote Sens. 2019, 11, 1997. [Google Scholar] [CrossRef] [Green Version]
- Kellner, J.R.; Armston, J.; Birrer, M.; Cushman, K.C.; Duncanson, L.; Eck, C.; Fallenger, C.; Imbach, B.; Král, K.; Krůček, M.; et al. New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surv. Geophys. 2019, 40, 959–977. [Google Scholar] [CrossRef] [Green Version]
- Morgan, G.R.; Hodgson, M.E.; Wang, C.; Schill, S.R. Unmanned aerial remote sensing of coastal vegetation: A review. Ann. GIS 2022, 28, 385–399. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M.; Brisco, B.; Granger, J.; Mohhamadimanesh, F.; Salehi, B. Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data. GIScience Remote Sens. 2021, 58, 1072–1089. [Google Scholar] [CrossRef]
- Pricope, N.G.; Minei, A.; Halls, J.N.; Chen, C.; Wang, Y. UAS Hyperspatial LiDAR Data Performance in Delineation and Classification across a Gradient of Wetland Types. Drones 2022, 6, 268. [Google Scholar] [CrossRef]
- O’Neil, G.; Goodall, J.; Watson, L. Evaluating the Potential for Site-Specific Modification of LiDAR DEM Derivatives to Improve Environmental Planning-Scale Wetland Identification Using Random Forest Classification; Elseiver: Amsterdam, The Netherlands, 2018; Available online: https://www-sciencedirect-com.proxy122.nclive.org/science/article/pii/S0022169418300854?via%3Dihub (accessed on 30 September 2022).
- Vanbrabant, Y.; Delalieux, S.; Tits, L.; Pauly, K.; Vandermaesen, J.; Somers, B. Pear flower cluster quantification using RGB drone imagery. Agronomy 2020, 10, 407. [Google Scholar] [CrossRef] [Green Version]
- Dugdale, S.J.; Kelleher, C.; Malcolm, L.A.; Caldwell, S.; Hannah, D.M. Assessing the potential of drone-based thermal Q r infrared imagery for quantifying river temperature heterogeneity. Hydrol. Process. 2019, 33, 1152–1163. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Wang, Z.; Wang, Z.; Zhou, X.; Cao, L. Monitoring of urban black-odor water based on Nemerow index and gradient boosting decision tree regression using UAV-borne hyperspectral imagery. Remote Sens. 2019, 11, 2402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, T.; Guo, Y.; Skidmore, A.; Zhang, Z.; Tang, R.; Song, S.; Tang, Z. Estimating Community-Level Plant Functional Traits in a Species-Rich Alpine Meadow Using UAV Image Spectroscopy. Remote Sens. 2022, 14, 3399. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Song, Z.; Chen, B.; Zhang, Y.; Yuan, W.; Chen, C.; Chen, W.; Ran, X.; Wang, Y. Mapping Coastal Wetlands of the Bohai Rim at a Spatial Resolution of 10 m Using Multiple Open-Access Satellite Data and Terrain Indices. Remote Sens. 2020, 12, 4114. [Google Scholar] [CrossRef]
- Fu, B.; Zou, P.; Liu, M.; Lan, G.; He, H.; Lao, Z.; Zhang, Y.; Fan, F.; Gao, E. Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images. Ecol. Indic. 2022, 140, 108989. [Google Scholar] [CrossRef]
- Kopačková-Strnadová, V.; Koucká, L.; Jelének, J.; Lhotáková, Z.; Oulehle, F. Canopy Top, Height and Photosynthetic Pigment Estimation Using Parrot Sequoia Multispectral Imagery and the Unmanned Aerial Vehicle (UAV). Remote Sens. 2021, 13, 705. [Google Scholar] [CrossRef]
- Bosquilia, R.; Muller-Kargerb, F. Analysis of the wetland classification using optical satellite imagery in the environmental protection area of Guaraqueçaba, PR, Brazil. J. S. Am. Earth Sci. 2021, 112, 103615. Available online: https://www-sciencedirect-com.proxy122.nclive.org/science/article/pii/S0895981121004612?via%3Dihub (accessed on 30 September 2022). [CrossRef]
- Use a DSM to Derive DTM Values—ArcGIS Pro|Documentation. Pro.arcgis.com. 2022. Available online: https://pro.arcgis.com/en/pro-app/2.8/help/analysis/image-analyst/use-a-dsm-to-derive-dtm-values.htm (accessed on 30 September 2022).
- Exploring Digital Elevation Models—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/exploring-digital-elevation-models.htm (accessed on 30 September 2022).
- Klippel, A. 3.2 Smoothing the DEM and Creating Contours|GEOG 497: 3D Modeling and Virtual Reality. Available online: https://www.e-education.psu.edu/geogvr/node/848 (accessed on 30 September 2022).
- How Derive Continuous Flow Works—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-derive-continuous-flow-works.htm (accessed on 30 September 2022).
- How Aspect Works—ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/how-aspect-works.htm (accessed on 30 September 2022).
- How Slope Works—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/how-slope-works.htm (accessed on 30 September 2022).
- Curvature (Spatial Analyst)—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/curvature.htm (accessed on 30 September 2022).
- NDVI Function—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/ndvi-function.htm (accessed on 30 September 2022).
- Acharya, T.V.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef]
- NDRE: Normalized Difference Red Edge Index. Available online: https://eos.com/industries/agriculture/ndre/ (accessed on 30 September 2022).
- Estimating Forest Canopy Density and Height—Help|ArcGIS Desktop. Available online: https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-solutions-estimating-forest-density-and-height.htm (accessed on 30 September 2022).
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems: 31st Annual Conference on Neural Information Process, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dudbourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
Site Name | Coordinates | Wetland Types | Date Surveyed | Wetland Habitat Points | Non-wetland Habitat Points | Area of Interest (Acres) | Spatial Resolution (cm) |
---|---|---|---|---|---|---|---|
St. James | 78°8′22″W 33°57′7″N | PFO, PSS | 12 May 2020 | 80 | 28 | 178.00 | 12.69 |
Topsail | 77°41′6″W 34°23′51″N | PFO, PSS | 2 June 2020 | 47 | 43 | 113.27 | 11.99 |
Castle Bay | 77°42′18″W 34°24′42″N | PFO, PSS, PEM, R5UB | 29 June 2020 | 91 | 70 | 128.45 | 12.00 |
River Road | 77°55′11″W 34°5′12″N | PFO, PEM, E1UB | 2 October 2020 | 95 | 40 | 54.34 | 12.50 |
Surf City | 77°33′15″W 34°26′24″N | PFO, PSS, E2EM, E1UB | 6 November 2020 | 96 | 61 | 78.28 | 12.61 |
Masonboro High Tide | 77°49′39″W 34°10′15″N | E1UB, E2US, M2US, E2EM | 7 December 2020 | 97 | 56 | 109.98 | 12.44 |
Masonboro Low Tide | 77°49′39″W 34°10′15″N | E1UB, E2US, M2US, E2EM | 11 December 2020 | 96 | 56 | 109.98 | 12.44 |
Maysville | 77°14′17″W 34°54′1″N | PFO, R5UB | 22 January 2021 | 27 | 53 | 43.80 | 12.69 |
Raster Layer | Variable | Data Input | Definition |
---|---|---|---|
1 | DSM | Digital Surface Model | Max height elevation in meters (including vegetation and artificial objects) [51] |
2 | DTM | Digital Elevation Model | Ground elevation in meters (vegetation and artificial objects removed) [52] |
3 | sDTM | Smoothed DTM | Ground elevation in meters, where microtopographic noise is removed [53] |
4 | hDTM | Hydro-condition DTM | Hydro-conditioning resolves topographic depressions before modeling flow paths [54] |
5 | Aspect | Aspect | Compass direction of the steepest downhill gradient [55] |
6 | Slope | Slope | The rate of change of elevation per DTM cell [56] |
7 | Curvature | Curvature | Combined curvature value from PlanCurv and ProfileCurv [57] |
8 | PlanCurv | Plan Curvature | The horizontal curvature of the slope [57] |
9 | ProfileCurv | Profile Curvature | The vertical curvature of the slope [57] |
10 | NDVI | Normalized Difference Vegetation Index | Uses the contrast of vegetation between near-infrared and red light to calculate the relative biomass in an area [58] |
11 | NDWI | Normalized Difference Water Index | An index that is used to measure the water content in vegetation at the canopy level using the green (550 nm ± 40 nm) and near-infrared band (790 nm ± 40 nm) reflectance values based on the McFeeters NDWI Index [59] |
12 | NDRE | Normalized Difference Red Edge Index | Measures the relative chlorophyll in plants due to reflecting light using the red edge (735 nm ± 10 nm) and near-infrared (790 nm ± 40 nm) band reflectance values [60] |
13 | CHM | Canopy Height Model | Maps the height of the canopy layer as a continuous function [61] |
Site | Variables | Wetland Types |
---|---|---|
St James | NDVI, CHM, DSM | PFO, PSS |
Topsail | NDVI, PlanCurv, CHM | PFO, PSS |
Castle Bay | CHM, DSM, Slope | PFO, PSS, PEM, R5UB |
River Road | sDTM, DTM, Slope | PFO, PEM, E1UB |
Surf City | DTM, NDWI, NDRE | PFO, PSS, E2EM, E1UB |
Masonboro High Tide | sDTM, hDTM, DTM | E1UB, E2EM |
Masonboro Low Tide | sDTM, DTM, hDTM | E1UB, E2US, M2US, E2EM |
Maysville | DTM, sDTM, Slope | PFO, R5UB |
Site | Variables | Wetland Types |
---|---|---|
St James | sDTM, hDTM, DSM | PFO, PSS |
Topsail | hDTM, DSM, DTM | PFO, PSS |
Castle Bay | hDTM, DTM, NDVI | PFO, PSS, PEM, R5UB |
River Road | DTM, DSM, CHM | PFO, PEM, E1UB |
Surf City | sDTM, DSM, DTM | PFO, PSS, E2EM, E1UB |
Masonboro High Tide | sDTM, DSM, Slope | E1UB, E2US, M2US, E2EM |
Masonboro Low Tide | sDTM, DSM, Slope | E1UB, E2US, M2US, E2EM |
Maysville | hDTM, DSM, DTM | PFO, R5UB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govil, S.; Lee, A.J.; MacQueen, A.C.; Pricope, N.G.; Minei, A.; Chen, C. Using Hyperspatial LiDAR and Multispectral Imaging to Identify Coastal Wetlands Using Gradient Boosting Methods. Remote Sens. 2022, 14, 6002. https://doi.org/10.3390/rs14236002
Govil S, Lee AJ, MacQueen AC, Pricope NG, Minei A, Chen C. Using Hyperspatial LiDAR and Multispectral Imaging to Identify Coastal Wetlands Using Gradient Boosting Methods. Remote Sensing. 2022; 14(23):6002. https://doi.org/10.3390/rs14236002
Chicago/Turabian StyleGovil, Shitij, Aidan Joshua Lee, Aiden Connor MacQueen, Narcisa Gabriela Pricope, Asami Minei, and Cuixian Chen. 2022. "Using Hyperspatial LiDAR and Multispectral Imaging to Identify Coastal Wetlands Using Gradient Boosting Methods" Remote Sensing 14, no. 23: 6002. https://doi.org/10.3390/rs14236002
APA StyleGovil, S., Lee, A. J., MacQueen, A. C., Pricope, N. G., Minei, A., & Chen, C. (2022). Using Hyperspatial LiDAR and Multispectral Imaging to Identify Coastal Wetlands Using Gradient Boosting Methods. Remote Sensing, 14(23), 6002. https://doi.org/10.3390/rs14236002