MPFINet: A Multilevel Parallel Feature Injection Network for Panchromatic and Multispectral Image Fusion
Abstract
:1. Introduction
- A multilevel parallel feature injection network (MPFINet) is devised to concurrently learn spectral information and spatial details. It can leverage hierarchical features from PAN and MS images to balance spatial enhancement and spectral preservation.
- In the feature extraction branch, a multi-scale dynamic convolutional dense block (MDCDB) is proposed to effectively extract four-stream features of different levels and take advantage of cross-scale information.
- To reuse and supplement the feature information, cascade transformer blocks based on the channel self-attention mechanism (CSTB) are established to adaptively learn cross-channel dependencies and long-range details of PAN and MS images.
2. Background and Related Works
2.1. Attention Mechanism
2.2. Dynamic Convolution
3. The Proposed Network
3.1. Overall Network Framework
3.2. Feature Extraction Branch
3.3. Feature Fusion Stage
3.4. Image Reconstruction Branch
3.5. Loss Function
4. Experimental Results and Analysis
4.1. Datasets and Experimental Setup
4.2. Compared Methods and Evaluation Metric
4.3. Experimental Results on the QB Dataset
4.4. Experimental Results on the WV3 Dataset
4.5. Ablation Study
4.5.1. Ablation Study on the Input of the Feature Extraction Branch
4.5.2. Ablation Study on MPFINet with Different Structures and Loss Function Settings
4.5.3. Ablation Study on the Structure of MDCDB
4.5.4. Ablation Study on the Number of CSTBs
4.6. Visualization of Feature Maps
4.7. Computation Complexity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Song, H.; Huang, J.; Zhong, H.; Zhan, R.; Teng, X.; Qiu, Z.; He, M.; Cao, J. Flood Detection in Dual-Polarization SAR Images Based on Multi-Scale Deeplab Model. Remote Sens. 2022, 14, 5181. [Google Scholar] [CrossRef]
- Grządziel, A. Application of Remote Sensing Techniques to Identification of Underwater Airplane Wreck in Shallow Water Environment: Case Study of the Baltic Sea, Poland. Remote Sens. 2022, 14, 5195. [Google Scholar] [CrossRef]
- Jiang, J.; Xing, Y.; Wei, W.; Yan, E.; Xiang, J.; Mo, D. DSNUNet: An Improved Forest Change Detection Network by Combining Sentinel-1 and Sentinel-2 Images. Remote Sens. 2022, 14, 5046. [Google Scholar] [CrossRef]
- Yilmaz, C.S.; Yilmaz, V.; Gungor, O. A theoretical and practical survey of image fusion methods for multispectral pansharpening. Inf. Fusion 2022, 79, 1–43. [Google Scholar] [CrossRef]
- Dadrass Javan, F.; Samadzadegan, F.; Mehravar, S.; Toosi, A.; Khatami, R.; Stein, A. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2021, 171, 101–117. [Google Scholar] [CrossRef]
- Carper, W.; Lillesand, T.; Kiefer, R. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Kwarteng, P.; Chavez, A. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS+Pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Tu, T.; Su, S.; Shyu, H.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2004, 2, 177–186. [Google Scholar] [CrossRef]
- Jianguo, L. Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar]
- Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Baronti, S.; Aiazzi, B.; Selva, M.; Garzelli, A.; Alparone, L. A Theoretical Analysis of the Effects of Aliasing and Misregistration on Pansharpened Imagery. IEEE J. Sel. Top. Signal Process. 2011, 5, 446–453. [Google Scholar] [CrossRef]
- Fei, R.; Zhang, J.; Liu, J.; Fang Du, P.C.; Hu, J. Convolutional sparse representation of injected details for pansharpening. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1595–1599. [Google Scholar] [CrossRef]
- Fei, R.; Zhang, J.; Liu, J.; Du, F.; Hu, J.; Chang, P.; Zhou, C.; Sun, K. Weighted manifold regularized sparse representation of featured injected details for pansharpening. Int. J. Remote Sens. 2021, 42, 4199–4223. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. A new pansharpening algorithm based on total variation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 318–322. [Google Scholar] [CrossRef]
- Zhang, Y.; Duijster, A.; Scheunders, P. A Bayesian restoration approach for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3453–3462. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth-Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Xiang, H.; Zou, Q.; Nawaz, M.A.; Huang, X.; Zhang, F.; Yu, H. Deep learning for image inpainting: A survey. Pattern Recognit. 2022, 134, 109046. [Google Scholar] [CrossRef]
- Khan, S.; Khan, A. FFireNet: Deep Learning Based Forest Fire Classification and Detection in Smart Cities. Symmetry 2022, 14, 2155. [Google Scholar] [CrossRef]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, G.; Vitale, S.; Cozzolino, D. Target-Adaptive CNN-Based Pansharpening. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5443–5457. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L. Boosting the Accuracy of Multispectral Image Pansharpening by Learning a Deep Residual Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1795–1799. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Huang, B. Super-Resolution-Guided Progressive Pansharpening Based on a Deep Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5206–5220. [Google Scholar] [CrossRef]
- Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A Deep Network Architecture for Pan-Sharpening. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1753–1761. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Liu, J.; Zhang, C.; Fei, R.; Xu, S. PercepPan: Towards Unsupervised Pan-Sharpening Based on Perceptual Loss. Remote Sens. 2020, 12, 2318. [Google Scholar] [CrossRef]
- Ciotola, M.; Vitale, S.; Mazza, A.; Poggi, G.; Scarpa, G. Pansharpening by Convolutional Neural Networks in the Full Resolution Framework. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Sun, M.; Ou, Y. Pan-Sharpening Using an Efficient Bidirectional Pyramid Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5549–5563. [Google Scholar] [CrossRef]
- Diao, W.; Zhang, F.; Sun, J.; Xing, Y.; Zhang, K.; Bruzzone, L. ZeRGAN: Zero-Reference GAN for Fusion of Multispectral and Panchromatic Images. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.J.; Deng, L.J.; Huang, T.Z.; Chanussot, J.; Vivone, G. A Triple-Double Convolutional Neural Network for Panchromatic Sharpening. IEEE Trans. Neural Networks Learn. Syst. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yao, H.; Li, C.; Zhang, G.; Leung, H. Multiresolution Analysis Based on Dual-Scale Regression for Pansharpening. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Max, J.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2017–2025. [Google Scholar]
- Almahairi, A.; Ballas, N.; Cooijmans, T.; Zheng, Y.; Larochelle, H.; Courville, A. Dynamic Capacity Networks. In Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML’16), New York, NY, USA, 19–24 June 2016; Volume 48, pp. 2549–2558. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision–ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhang, J.; Long, C.; Wang, Y.; Piao, H.; Mei, H.; Yang, X.; Yin, B. A Two-Stage Attentive Network for Single Image Super-Resolution. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1020–1033. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 13708–13717. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations (ICLR), Virtual Event, 3–7 May 2021. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 7794–7803. [Google Scholar]
- Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic Convolution: Attention Over Convolution Kernels. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11027–11036. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2480–2495. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML’15, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Fu, X.; Wang, W.; Huang, Y.; Ding, X.; Paisley, J. Deep Multiscale Detail Networks for Multiband Spectral Image Sharpening. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 2090–2104. [Google Scholar] [CrossRef] [PubMed]
- Yuchen, L.; Yong, Z.; Junchi, Y.; Wei, L. Generalizing Face Forgery Detection with High-frequency Features. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 16312–16321. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (GELUs). IEEE Trans. Neural Netw. Learn. Syst. 2016, 32, 2090–2104. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient Transformer for High-Resolution Image Restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–23 June 2022; pp. 5728–5739. [Google Scholar]
- Luo, Y.; Zhang, Y.; Yan, J.; Liu, W. NAFNet Simple Baselines for Image Restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–23 June 2022; pp. 1239–1248. [Google Scholar]
- Sajjadi, M.S.M.; Schölkopf, B.; Hirsch, M. EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4501–4510. [Google Scholar] [CrossRef]
- Deng, L.j.; Vivone, G.; Paoletti, M.E.; Scarpa, G.; He, J.; Zhang, Y.; Chanussot, J.; Plaza, A. Machine Learning in Pansharpening: A benchmark, from shallow to deep networks. IEEE Geosci. Remote Sens. Mag. 2022, 10, 279–315. [Google Scholar] [CrossRef]
- Lucien, W.; Thierry, R.; Marc, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting image. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Chang, C.I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- Vivone, G.; Restaino, R.; Dalla Mura, M.; Licciardi, G.; Chanussot, J. Contrast and Error-Based Fusion Schemes for Multispectral Image Pansharpening. IEEE Geosci. Remote Sens. Lett. 2014, 11, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Liu, Q.; Wang, Y. PanFormer: A Transformer Based Model for Pan-Sharpening. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.J.; Zhang, T.J.; Wu, X. SSconv: Explicit Spectral-to-Spatial Convolution for Pansharpening. In Proceedings of the 29th ACM International Conference on Multimedia. Association for Computing Machinery, Virtual Event China, 20–24 October 2021; pp. 4472–4480. [Google Scholar] [CrossRef]
- Nezhad, Z.H.; Karami, A.; Heylen, R.; Scheunders, P. Fusion of Hyperspectral and Multispectral Images Using Spectral Unmixing and Sparse Coding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2377–2389. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palsson, F.; Sveinsson, J.R.; Benediktsson, J.A.; Aanaes, H. Classification of Pansharpened Urban Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 281–297. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef]
- Wald, L. Quality of high-resolution synthesised images: Is there a simple criterion. In Proceedings of the 3rd Conference Fusion Earth Data, Sophia Antipolis, France, 26–28 January 2000; pp. 99–103. [Google Scholar]
- Scarpa, G.; Ciotola, M. Full-Resolution Quality Assessment for Pansharpening. Remote Sens. 2022, 14, 1808. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A Critical Comparison Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Xiao, S.S.; Jin, C.; Zhang, T.J.; Ran, R.; Deng, L.J. Progressive Band-Separated Convolutional Neural Network for Multispectral Pansharpening. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4464–4467. [Google Scholar] [CrossRef]
- Li, W.; Liang, X.; Dong, M. MDECNN: A Multiscale Perception Dense Encoding Convolutional Neural Network for Multispectral Pan-Sharpening. Remote Sens. 2021, 13, 535. [Google Scholar] [CrossRef]
Method | PSNR | SSIM | CC | SAM | ERGAS | UIQI |
---|---|---|---|---|---|---|
Brovey | 27.3228 | 0.8034 | 0.7992 | 0.0360 | 5.1949 | 0.7417 |
MTF_GLP_HPM | 25.1442 | 0.7797 | 0.8751 | 0.0395 | 6.0307 | 0.7645 |
SFIM | 26.4810 | 0.7313 | 0.8490 | 0.0493 | 5.1755 | 0.7280 |
CNMF | 27.7634 | 0.7680 | 0.8365 | 0.0481 | 4.7586 | 0.7640 |
PNN | 30.2131 | 0.8220 | 0.9305 | 0.0478 | 3.4744 | 0.8553 |
PANNET | 33.0751 | 0.8776 | 0.9638 | 0.0406 | 2.4413 | 0.9038 |
SRPPNN | 34.4130 | 0.9009 | 0.9717 | 0.0404 | 2.1060 | 0.9209 |
MUCNN | 34.8714 | 0.9097 | 0.9745 | 0.0383 | 2.0003 | 0.9264 |
ZeRGAN | 24.5345 | 0.7124 | 0.7645 | 0.0923 | 6.7646 | 0.6578 |
PanFormer | 35.8243 | 0.9207 | 0.9781 | 0.0362 | 1.8160 | 0.9340 |
Proposed | 36.5424 | 0.9291 | 0.9812 | 0.0357 | 1.6624 | 0.9405 |
Ideal value | 1 | 1 | 0 | 0 | 1 |
Method | QNR | ||
---|---|---|---|
Brovey | 0.0205 | 0.7812 | 0.7960 |
MTF_GLP_HPM | 0.0761 | 0.9003 | 0.8484 |
SFIM | 0.1034 | 0.9327 | 0.8628 |
CNMF | 0.0600 | 0.8353 | 0.8434 |
PNN | 0.3337 | 0.9848 | 0.8962 |
PANNET | 0.2723 | 0.9859 | 0.8874 |
SRPPNN | 0.3166 | 0.9866 | 0.8965 |
MUCNN | 0.3058 | 0.9861 | 0.8989 |
ZeRGAN | 0.1590 | 0.7342 | 0.6881 |
PanFormer | 0.8367 | 0.1328 | 0.8918 |
Proposed | 0.3344 | 0.9862 | 0.8911 |
Ideal value | 0 | 1 | 1 |
Method | PSNR | SSIM | CC | SAM | ERGAS | UIQI |
---|---|---|---|---|---|---|
Brovey | 29.9676 | 0.8792 | 0.8851 | 0.0459 | 5.4111 | 0.7286 |
MTF_GLP_HPM | 27.6733 | 0.8801 | 0.9029 | 0.0488 | 7.0395 | 0.7593 |
SFIM | 32.0575 | 0.8943 | 0.9304 | 0.0405 | 4.3210 | 0.8046 |
CNMF | 31.5958 | 0.9013 | 0.9140 | 0.0466 | 4.6167 | 0.7440 |
PNN | 36.3034 | 0.9578 | 0.9688 | 0.0363 | 2.6760 | 0.8887 |
PANNET | 35.8773 | 0.9537 | 0.9676 | 0.0365 | 2.7940 | 0.8728 |
SRPPNN | 38.2118 | 0.9704 | 0.9798 | 0.0315 | 2.1081 | 0.9061 |
MUCNN | 37.9780 | 0.9700 | 0.9792 | 0.0317 | 2.1768 | 0.9063 |
ZeRGAN | 28.6615 | 0.8328 | 0.8604 | 0.1063 | 6.6978 | 0.6901 |
PanFormer | 38.0079 | 0.9697 | 0.9792 | 0.0321 | 2.1484 | 0.8986 |
Proposed | 38.5129 | 0.9739 | 0.9823 | 0.0298 | 2.0355 | 0.9132 |
Ideal value | 1 | 1 | 0 | 0 | 1 |
Method | QNR | ||
---|---|---|---|
Brovey | 0.0795 | 0.8370 | 0.8254 |
MTF_GLP_HPM | 0.1241 | 0.8455 | 0.8441 |
SFIM | 0.1330 | 0.9072 | 0.8812 |
CNMF | 0.1153 | 0.8396 | 0.8040 |
PNN | 0.2938 | 0.9024 | 0.8588 |
PANNET | 0.2675 | 0.9019 | 0.8978 |
SRPPNN | 0.3466 | 0.9009 | 0.8643 |
MUCNN | 0.3359 | 0.9005 | 0.8801 |
ZeRGAN | 0.2494 | 0.7832 | 0.7237 |
PanFormer | 0.3834 | 0.9044 | 0.8882 |
Proposed | 0.3355 | 0.9051 | 0.8991 |
Ideal value | 0 | 1 | 1 |
Input | PSNR | SSIM | CC | SAM | ERGAS | UIQI |
---|---|---|---|---|---|---|
HP-PAN | 35.9926 | 0.9244 | 0.9798 | 0.0360 | 1.7496 | 0.9380 |
36.5424 | 0.9291 | 0.9812 | 0.0357 | 1.6624 | 0.9405 |
L1 | L2 | Single Level | Double Levels | Three Levels | w/o DAFM | w/o Masked V | PSNR | SSIM | CC | SAM | ERGAS | UIQI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
✓ | ✓ | 36.5424 | 0.9291 | 0.9813 | 0.0357 | 1.6624 | 0.9405 | |||||
✓ | ✓ | 35.8549 | 0.9229 | 0.9792 | 0.0364 | 1.7757 | 0.9359 | |||||
✓ | ✓ | ✓ | 36.4230 | 0.9294 | 0.9811 | 0.0358 | 1.6791 | 0.9403 | ||||
✓ | ✓ | 36.1944 | 0.9266 | 0.9802 | 0.0360 | 1.7188 | 0.9388 | |||||
✓ | ✓ | 35.5495 | 0.9216 | 0.9776 | 0.0364 | 1.8557 | 0.9353 | |||||
✓ | ✓ | ✓ | 36.2956 | 0.9277 | 0.9804 | 0.0359 | 1.7080 | 0.9395 |
CA | CBAM | SE Block | BN | w/o DyConv | One Submodule | PSNR | SSIM | CC | SAM | ERGAS | UIQI |
---|---|---|---|---|---|---|---|---|---|---|---|
✓ | 36.5424 | 0.9291 | 0.9813 | 0.0357 | 1.6624 | 0.9405 | |||||
✓ | ✓ | 36.3036 | 0.9274 | 0.9804 | 0.0358 | 1.7103 | 0.9394 | ||||
✓ | ✓ | 36.3949 | 0.9285 | 0.9809 | 0.0359 | 1.6860 | 0.9399 | ||||
✓ | ✓ | 36.1250 | 0.9246 | 0.9794 | 0.0361 | 1.7724 | 0.9378 | ||||
✓ | 35.9982 | 0.9249 | 0.9792 | 0.0360 | 1.7694 | 0.9373 | |||||
✓ | 36.4488 | 0.9290 | 0.9811 | 0.0358 | 1.6777 | 0.9407 |
Number of CSTBs | 2 | 3 | 4 |
---|---|---|---|
Parameters | 2.76 M | 3.60 M | 4.45 M |
Training time (h) | 4.7 | 5.75 | 6.8 |
Method | Test Time (s) | Number of Parameters |
---|---|---|
Brovey | 0.130 | - |
MTF_GLP_HPM | 0.913 | - |
SFIM | 0.087 | - |
CNMF | 6 | - |
PNN | 0.304 | 0.08 M |
PANNET | 0.348 | 0.15 M |
SRPPNN | 0.130 | 0.38 M |
MUCNN | 0.130 | 1.2 M |
ZeRGAN | 3409.018 | 0.9 M |
PanFormer | 0.216 | 1.5 M |
MPFINet | 0.087 | 3.6 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Jin, X.; Jiang, Q.; Wang, Q.; Liu, L.; Yao, S. MPFINet: A Multilevel Parallel Feature Injection Network for Panchromatic and Multispectral Image Fusion. Remote Sens. 2022, 14, 6118. https://doi.org/10.3390/rs14236118
Feng Y, Jin X, Jiang Q, Wang Q, Liu L, Yao S. MPFINet: A Multilevel Parallel Feature Injection Network for Panchromatic and Multispectral Image Fusion. Remote Sensing. 2022; 14(23):6118. https://doi.org/10.3390/rs14236118
Chicago/Turabian StyleFeng, Yuting, Xin Jin, Qian Jiang, Quanli Wang, Lin Liu, and Shaowen Yao. 2022. "MPFINet: A Multilevel Parallel Feature Injection Network for Panchromatic and Multispectral Image Fusion" Remote Sensing 14, no. 23: 6118. https://doi.org/10.3390/rs14236118
APA StyleFeng, Y., Jin, X., Jiang, Q., Wang, Q., Liu, L., & Yao, S. (2022). MPFINet: A Multilevel Parallel Feature Injection Network for Panchromatic and Multispectral Image Fusion. Remote Sensing, 14(23), 6118. https://doi.org/10.3390/rs14236118