Slip Models of the 2016 and 2022 Menyuan, China, Earthquakes, Illustrating Regional Tectonic Structures
Abstract
:1. Introduction
Event | Source | Longitude/° | Latitude/° | Depth/km | Mw | Strike/° | Dip/° | Rake/° |
---|---|---|---|---|---|---|---|---|
2016 | USGS | 101.64 | 37.67 | 9.0 | 5.9 | 141 | 50 | 79 |
337 | 41 | 103 | ||||||
GCMT | 101.68 | 37.67 | 14.3 | 5.9 | 146 | 43 | 83 | |
335 | 47 | 96 | ||||||
Li et al., 2016 [23] | - | - | 10.5 | 5.9 | 134 | 43 | 68 | |
Wang et al., 2017 [17] | - | - | 9 | 6.0 | 127 ± 6 | 45 ± 2 | 73 ± 6 | |
Liu et al., 2018 [24] | 101.64 | 37.67 | 7.2 | 6.0 | 140 | 43 | 84 | |
Zhang et al.,2020 [14] | - | - | ~13 | 5.9 | 115 | 50 | 85 | |
Qu et al., 2021 [26] | - | - | 12 | 5.9 | 140 | 44 | 67 | |
This study 1 | 101.60 * | 37.65 * | 9.25 * | 6.0 | 127 | 30 | 70 | |
This study 2 | 101.62 * | 37.66 * | 8.22 * | 5.9 | 127 | 45 | 70 | |
2022 | USGS | 101.29 | 37.83 | 13.0 | 6.6 | 104 | 88 | 15 |
13 | 75 | 178 | ||||||
GCMT | 101.31 | 37.80 | 14.8 | 6.6 | 104 | 82 | 1 | |
14 | 89 | 172 | ||||||
Li et al., 2022 [15] | - | - | - | 6.7 | 104 | 80 | 0 | |
~5 | 109 | 80 | 5 | |||||
Feng et al., 2022 [29] | - | - | - | 6.7 | 88.6 | 70 | - | |
~4 | 127.2 | 88 | - | |||||
He et al., 2022 [31] | 101.29 | 37.78 | ~5 | 6.65 | 108 | 83.6 | - | |
Li et al., 2022 [32] | - | - | 4 | 6.6 | 106 | 86 | −5 | |
Luo et al., 2022 [34] | - | - | ~2 | 6.7 | 106 | 77.6 | - | |
This study 3 | 101.28 * | 37.79 * | ~3.5 | 6.6 | 105 | 85.6 | 38 | |
This study 4 | 101.27 * | 37.79 * | ~3.5 * | 6.6 | 105 | 85.6 | 38 | |
101.15 * | 37.79 * | ~2.5 * | 86 |
2. Data and Methods
2.1. Interseismic Data and Processing
2.2. Coseismic Data and Processing
Events | Orbit | SAR Image Acquisition | Perpendicular Baseline (m) | Incidence (°) | Heading (°) | |
---|---|---|---|---|---|---|
Reference | Secondary | |||||
2016 | S1 T128A | 13 January 2016 | 6 February 2016 | 13 | 33.677 | −13.238 |
S1 T33D | 18 January 2016 | 11 February 2016 | 5 | 33.729 | −166.776 | |
2022 | S1 T128A | 5 January 2022 | 17 January 2022 | 54 | 33.678 | −13.237 |
S1 T33D | 29 December 2021 | 10 January 2022 | 39 | 33.706 | −166.777 |
2.3. Fault Model
2.4. Fault Slip Distribution Inversion
2.5. Coulomb Stress Changes Calculations
3. Results
3.1. Interseismic Velocity Field from InSAR over Menyuan Area
3.2. Coseismic Displacement Field
3.3. Coseismic Slip Distribution
3.4. Coulomb Failure Stress Change
4. Discussion
4.1. Seismogenic Faults of the Two Menyuan Earthquakes Linked to the Regional Tectonic Structures
4.2. Relationships between Two Menyuan Earthquakes and Regional Seismic Hazard
4.3. The Slip Distribution Variations of the 2022 Menyuan Earthquake
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avouac, J.P.; Tapponnier, P. Kinematic Model of Active Deformation in Central-Asia. Geophys. Res. Lett. 1993, 20, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.Z.; Wang, Q.; Ma, Z.J. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet Plateau. Earth Sci. Front. 2002, 9, 442–450. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, D.Y. Tectonic Deformation Features and Space-Time Evolution in Northeastern Margin of the Qinghai-Tibetan Plateau Since the Late Cenozoic Time. Ph.D. Thesis, Institute of Geology, CEA, Beijing, China, 2003. (In Chinese). [Google Scholar]
- Li, Y.C.; Qu, C.Y.; Shan, X.J.; Song, X.G.; Zhang, G.H.; Gan, W.J.; Wen, S.Y.; Wang, Z.J. Deformation of the Haiyuan-Liupanshan fault zone inferred from the denser GPS observations. Earthq. Sci. 2015, 28, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.D.; Song, F.M.; Zhu, S.L.; Li, M.L.; Wang, T.L.; Zhang, W.Q.; Burchfiel, B.C.; Molnar, P.; Zhang, P.Z. Active faulting and Tectonics of the Ningxia-Hui Autonomous Region, China. J. Geophy. Res. 1984, 89, 4427–4445. [Google Scholar]
- Zhang, P.Z.; Molnar, P.; Burchfiel, B.C.; Royden, L.; Wang, Y.P.; Deng, Q.D.; Song, F.M.; Zhang, W.Q.; Jiao, D.C. Bounds on the Holocene slip rate of the Haiyuan Fault, North-central China. Quat. Res. 1988, 30, 151–164. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Zhang, P.Z.; Wang, Y.P.; Zhang, W.Q.; Song, F.M.; Deng, Q.D.; Molnar, P.; Royden, L. Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics 1991, 10, 1091–1110. [Google Scholar] [CrossRef]
- Gan, W.J.; Zhang, P.Z.; Shen, Z.K.; Zheng, Z.J.; Wang, M.; Wan, Y.G.; Zhou, D.M.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, W. Microplate model for the present-day deformation of Tibet. J. Geophy. Res. 2007, 112. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Wang, M.; Shen, Z.K. Block-like versus distributed crustal deformation around the northeastern Tibetan Plateau. J. Asian Earth Sci. 2017, 140, 31–47. [Google Scholar] [CrossRef]
- Jolivet, R.; Lasserre, C.; Doin, M.P.; Guillaso, S.; Peltzer, G.; Dailu, R.; Sun, J.; Shen, Z.K.; Xu, X. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. J. Geophy. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.Y.; Shan, X.J.; Xu, X.B.; Zhang, G.H.; Song, X.G.; Zhang, G.F. Near-field Motion of the Haiyuan Fault Zone in the Northeastern Margin of the Tibetan Plateau Derived from InSAR Permanent Scatterers Analysis. J. Applied Remote Sens 2013, 7, 073507. [Google Scholar] [CrossRef]
- Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophy. J. Int. 2016, 205, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Shan, X.J.; Zhang, G.H.; Zhong, M.J.; Zhao, Y.J.; Wen, S.Y.; Qu, C.Y.; Zhao, D.Z. The 2016 Mw 5.9 Menyuan earthquake in the Qilian Orogen, China: A potentially delayed depth-segmented rupture following from the 1986 Mw 6.0 Menyuan earthquake. Seismol. Res. Lett. 2020, 91, 758–769. [Google Scholar] [CrossRef]
- Li, Z.H.; Han, B.Q.; Liu, Z.J.; Zhang, M.M.; Yu, C.; Chen, B.; Liu, H.H.; Du, J.; Zhang, S.C.; Zhu, W.; et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 887–897. (In Chinese) [Google Scholar] [CrossRef]
- Hu, C.Z.; Yang, P.X.; Li, Z.M.; Huang, S.T.; Zhao, Y.; Chen, D.; Xiong, R.W.; Chen, Q.Y. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai Ms6.4 earthquake. Chin. J. Geophys. 2016, 59, 1637–1646. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.; Liu-Zeng, J.; Ng, A.H.M.; Ge, L.; Javed, F.; Long, F.; Aoudia, A.; Feng, J.; Shao, Z. Sentinel-1 observations of the 2016 Menyuan Earthquake: A buried reverse event linked to the left-lateral Haiyuan Fault. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 14–21. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.Y.; Peng, Z.G.; Ouyang, L.B.; Ma, Y.H.; Ma, J.X.; Liang, Z.J.; Huang, Y.F. Spatial-temporal distribution of early aftershocks following the 2016 Ms6.4 Menyuan, Qinghai, China earthquake. Tectonophysics 2019, 766, 469–479. [Google Scholar] [CrossRef]
- Pan, J.W.; Li, H.B.; Chevalier, M.L.; Liu, D.L.; Li, C.; Liu, F.C.; Wu, Q.; Lu, H.J.; Jiao, L.Q. Coseismic surface rupture and seismogenic structure of the 2022 Ms6.9 Menyuan earthquake, Qinghai Province, China. Acta Geol. Sin. 2022, 96, 215–231. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.H.; Hu, J.; Li, Z.W.; Ma, Z.F.; Shi, J.W.; Xu, W.B.; Sun, Q. Three-dimensional surface displacements of the 8 January 2022 Mw6.7 Menyuan earthquake, China from Sentinel-1 and AlOS-2 SAR observations. Remote Sens. 2022, 14, 1404. [Google Scholar] [CrossRef]
- Chen, W.T.; Gan, W.J.; Xiao, G.R.; Wang, Y.B.; Lian, W.P.; Liang, S.M.; Zhang, K.L. Characteristics of regional crustal deformation before 2016 Menyuan Ms6.4 earthquake. Geod. Geodyn. 2016, 7, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.X.; Qin, S.L.; Wang, W.P. Dynamics evolution of crustal deformation before the Ms6.4 Menyuan earthquake. Geod. Geodyn. 2016, 7, 253–260. [Google Scholar] [CrossRef]
- Li, Y.S.; Jiang, W.L.; Zhang, J.F.; Luo, Y. Space geodetic observations and modeling of 2016 Mw 5.9 Menyuan earthquake: Implications on seismogenic tectonic motion. Remote Sens. 2016, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Zhang, G.H.; Zhang, Y.F.; Shan, X.J. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements. J. Asian Earth Sci. 2018, 158, 103–111. [Google Scholar] [CrossRef]
- Zheng, B.W.; Gong, W.Y.; Wen, S.Y.; Zhang, Y.F.; Shan, X.J.; Song, X.G.; Liu, Y.H. Study on the seismogenic fault characteristics of 2016 Mw5.9 Menyuan earthquake based on Sentinel-1A data. Seismol. Geol. 2018, 40, 872–882. (In Chinese) [Google Scholar] [CrossRef]
- Qu, W.; Liu, B.H.; Zhang, Q.; Gao, Y.; Chen, H.L.; Wang, Q.L.; Hao, M. Sentinel-1 InSAR observations of co- and post-seismic deformation mechanisms of the 2016 Mw 5.9 Menyuan earthquake, Northwestern China. Adv. Space Res. 2021, 68, 1301–1317. [Google Scholar] [CrossRef]
- Han, S.; Wu, Z.H.; Gao, Y.; Lu, H.F. Surface rupture investigation of the 2022 Menyuan Ms 6.9 earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling Fault and regional intense earthquake risk. J. Geomech. 2022, 28, 155–168. (In Chinese) [Google Scholar] [CrossRef]
- Fan, L.P.; Li, B.R.; Liao, S.R.; Jiang, C.; Fang, L.H. Precise relocation of the aftershock sequences of the 2022 M6.9 Menyuan earthquake. Earthq. Sci. 2022, 35, 138–145. [Google Scholar] [CrossRef]
- Feng, W.P.; He, X.H.; Zhang, Y.P.; Fang, L.H.; Samsonov, S.; Zhang, P.Z. Seismic faults of the 2022 Mw6.6 Menyuan, Qinghai Earthquake and its implication for the regional seismogenic structures. Sci. Bull. 2022, 617, 1–17. (In Chinese) [Google Scholar] [CrossRef]
- Yang, H.F.; Wang, D.; Guo, R.M.; Xie, M.Y.; Zang, Y.; Wang, Y.; Yao, Q.; Cheng, C.; An, Y.R.; Zhang, Y.Y. Rapid report of the 8 January 2022 Ms 6.9 Menyuan earthquake, Qinghai, China. Earthq. Res. Adv. 2022, 2, 100113. [Google Scholar] [CrossRef]
- He, P.; Liu, C.L.; Wen, Y.M.; He, X.P.; Ding, K.H.; Xu, C.J. The 2022 Mw6.6 Menyuan Earthquake in the Northwest Margin of Tibet: Geodetic and Seismic Evidence of the Fault Structure and Slip Behavior of the Qilian–Haiyuan Strike-Slip Fault. Seismol. Res. Lett. 2022. [Google Scholar] [CrossRef]
- Li, Y.S.; Jiang, W.L.; Li, Y.J.; Shen, W.H.; He, Z.T.; Li, B.Q.; Li, Q.; Jiao, Q.S.; Tian, Y.F. Coseismic Rupture Model and Tectonic Implications of the January 7 2022, Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation. Remote Sens. 2022, 14, 2111. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.W.; Zhang, B.; He, W.G.; Zhu, J.W.; Cai, Y.M. Recognition of surface ruptures of Menyuan Ms6.9 earthquake using GF images. China Earthq. Eng. J. 2022, 44, 440–449. (In Chinese) [Google Scholar] [CrossRef]
- Luo, H.; Wang, T. Strain Partitioning on the Western Haiyuan Fault System Revealed by the Adjacent 2016 Mw5.9 and 2022 Mw6.7 Menyuan Earthquakes. Geophys. Res. Lett. 2022, 49, e2022GL099348. [Google Scholar] [CrossRef]
- Xu, X.W.; Han, Z.J.; Yang, X.P.; Zhang, S.M.; Yu, G.H.; Zhou, B.G.; Li, F.; Ma, B.Q.; Chen, G.H.; Ran, Y.K. Seismotectonic Map in China and Its Adjacent Regions; Seismological Press: Beijing, China, 2016. (In Chinese) [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.J.; An, Y.F.; Jiang, W.L.; Mao, Z.B.; Feng, W. Activity of the Lenglongling Fault System and seismotectonics of the 2016 Ms6.4 Menyuan earthquake. Sci. China Earth Sci. 2017, 47, 617–630. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophy. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.M. Study of the Present Crustal Deformation Characteristics of the Southwest Margin of Ordos Block Were Using GPS. Ph.D. Thesis, Lanzhou Institute of Seismology, CEA, Lanzhou, China, 2020. (In Chinese). [Google Scholar]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR Scientific Computing Environment. In Proceedings of the EUSAR 2012 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012. [Google Scholar]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arikan, M. Recent advances in SAR Interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Catalão, J.; Nico, G.; Hanssen, R.; Catita, C. Merging GPS and atmospherically corrected InSAR data to map 3-D terrain displacement velocity. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2354–2360. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Sun, Q. Derivation of 3-D coseismic surface displacement fields for the 2011 Mw 9.0 Tohoku-Oki earthquake from InSAR and GPS measurements. Geophys. J. Int. 2013, 192, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Wegmüller, U.; Werner, C.; Stroozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmüller, U.; Werner, C. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.B.; Gan, W.J.; Wang, Y.B.; Chen, W.T.; Liang, S.M.; Zhang, K.L.; Zhang, Y.Q. Seismogenic structure of the 2016 Ms6.4 Menyuan earthquake and its effect on the Tianzhu seismic gap. Geod. Geodyn. 2016, 7, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.J.; Diao, F.Q.; Hoechner, A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry. In Proceedings of the European Geosciences Union Conference, Vienna, Austria, 7–12 April 2013. Vienna: EGU General Assembly 2013: Number EGU2013-2411-1. [Google Scholar]
- Persson, P.O.; Strang, G. A simple Mesh Generator in MATLAB. Siam Rev. 2004, 46, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Shao, Z.G.; Zhang, L.P.; Ma, H.S. Progress and review of Coulomb failure stress changes on fault plane. Prog. Geophys. 2013, 28, 132–145. (In Chinese) [Google Scholar] [CrossRef]
- Stein, R.S.; King, G.C.P.; Lin, J. Change in failure stress on the southern San Andreas fault system caused by the 1992 Magnitude=7.4 Landers earthquake. Science 1992, 258, 1328–1332. [Google Scholar] [CrossRef] [PubMed]
- Toda, S.; Lin, J.; Meghraoui, M.; Stein, R.S. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Qiao, X.J.; Liu, G.; Xiong, W.; Jia, Z.G.; Li, Y.; Wang, Y.B.; You, X.Z.; Long, F. Study on the coseismic slip model and Coulomb stress of the 2017 Jiuzhaigou Ms7.0 earthquake constrained by GNSS and InSAR measurements. Chin. J. Geophys. 2018, 61, 2122–2132. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, A.Y.; Wang, Y.Z.; Li, Y.H.; Zhang, D.N. Numerical simulation on the mechanism of the Madoi, Qinghai Ms7.4 earthquake constrained by InSAR deformation. Chin. J. Geophys. 2021, 64, 4548–4561. (In Chinese) [Google Scholar] [CrossRef]
- Harris, R.A. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res. 1998, 103, 24347–24358. [Google Scholar] [CrossRef]
- Stein, R.S. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Wang, R.J.; Lorenzo-Martin, F.L.; Roth, F. PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef] [Green Version]
- King, G.C.P.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.Q.; Zheng, D.W.; Liu, X.W.; Lei, Q.Y.; Shao, Y.X. Coulomb stress transfer of strong earthquakes within tectonic belts near western Ordos blocks. Chin. J. Geophys. 2021, 64, 3576–3599. (In Chinese) [Google Scholar] [CrossRef]
- Shi, F.Q.; Shao, Z.G.; Zhan, W.; Ding, X.G.; Zhu, L.; Li, Y.J. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margins of the Tibetan Plateau. Chin. J. Geophys. 2018, 61, 3651–3663. (In Chinese) [Google Scholar] [CrossRef]
- Gao, R.; Wang, H.Y.; Yin, A.; Dong, S.W.; Kuang, Z.Y.; Zuza, A.V.; Li, W.H.; Xiong, X.S. Tectonic development of the Northeastern Tibetan Plateau as constrained by high-resolution deep seismic-reflection data. Lithosphere 2013, 5, 555–574. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.Q.; Zhan, Y.; Sun, X.Y.; Hao, M.; Zhu, Y.Q.; Chen, X.B.; Yang, H. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan Qinghai, Ms6.4 earthquake derived from magnetotelluric imaging. Chin. J. Geophys. 2019, 62, 2088–2100. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, L.Q.; Zhan, Y.; Wang, Q.L.; Sun, X.Y.; Hao, M.; Zhu, Y.Q.; Han, J. The deep electrical structure and seismogenic background of Lenglongling uplift and its adjacent areas in the eastern end of Qilian Mountains. Chin. J. Geophys. 2020, 63, 1014–1025. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, L.Q.; Sun, X.Y.; Zhan, Y.; Yang, H.B.; Wang, Q.L.; Hao, M.; Liu, X.H. The seismogenic model of the Menyuan Ms6.9 earthquake on January 8, 2022, Qinghai Province and segmented extensional characteristics of the Lenglongling fault. Chin. J. Geophys. 2022, 65, 1536–1546. (In Chinese) [Google Scholar] [CrossRef]
- Gaudemer, Y.; Tapponnier, P.; Meyer, B.; Peltzer, G.; Guo, S.M.; Chen, Z.T.; Dai, H.G.; Cifuentes, I. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophys. J. Int. 1995, 120, 599–645. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.B.; Walters, R.J.; Song, S.G.; Saville, C.; Paola, N.D.; Ford, J.; Hu, Z.X.; Sun, W.L. Partitioning of oblique convergence coupled to the fault locking behavior of fold-and-thrust belts: Evidence from the Qilian Shan, northeastern Tibetan Plateau. Tectonics 2017, 36, 1679–1698. [Google Scholar] [CrossRef]
- Elliott, J.R.; Parsons, B.; Jackson, J.A.; Shan, X.; Sloan, R.A.; Walker, R.T. Depth segmentation of the seismogenic continental crust: The 2008 and 2009 Qaidam earthquakes. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Wen, S.Y.; Shan, X.J.; Zhang, Y.F.; Wang, J.Q.; Zhang, G.H.; Qu, C.Y.; Xu, X.B. Three-dimensional co-seismic deformation of the Da Qaidam, Qinghai earthquakes derived from D-InSAR data and their source features. Chin. J. Geophys. 2016, 59, 912–921. (In Chinese) [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H. New, improved version of Generic Mapping Tools released. Eos Trans. AGU 1998, 79, 579. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Qu, C.; Zhao, D.; Shan, X.; Chen, H. Slip Models of the 2016 and 2022 Menyuan, China, Earthquakes, Illustrating Regional Tectonic Structures. Remote Sens. 2022, 14, 6317. https://doi.org/10.3390/rs14246317
Wu D, Qu C, Zhao D, Shan X, Chen H. Slip Models of the 2016 and 2022 Menyuan, China, Earthquakes, Illustrating Regional Tectonic Structures. Remote Sensing. 2022; 14(24):6317. https://doi.org/10.3390/rs14246317
Chicago/Turabian StyleWu, Donglin, Chunyan Qu, Dezheng Zhao, Xinjian Shan, and Han Chen. 2022. "Slip Models of the 2016 and 2022 Menyuan, China, Earthquakes, Illustrating Regional Tectonic Structures" Remote Sensing 14, no. 24: 6317. https://doi.org/10.3390/rs14246317
APA StyleWu, D., Qu, C., Zhao, D., Shan, X., & Chen, H. (2022). Slip Models of the 2016 and 2022 Menyuan, China, Earthquakes, Illustrating Regional Tectonic Structures. Remote Sensing, 14(24), 6317. https://doi.org/10.3390/rs14246317