Predicting Wheat Leaf Nitrogen Content by Combining Deep Multitask Learning and a Mechanistic Model Using UAV Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Field Data Acquisition
2.2.1. UAV Image Data
2.2.2. Field Sampled Data
2.3. A New LNC Prediction Method
2.3.1. Shared Layer
2.3.2. Subtask Layer
2.3.3. Multitask Optimization
2.4. Data Analysis Method
2.4.1. SI Method
2.4.2. PLSR Method
2.4.3. ANN Method
2.4.4. ML-HM Method
Variable | Min | Max | AVG | SD | Sampling Method | Reference |
---|---|---|---|---|---|---|
LNC (Leaf nitrogen content, μg/cm2) | 20 | 220 | 110 | 45 | Gauss | Measured dataset |
Cbrown (Brown pigment content, μg/cm2) | 0 | 0 | - | - | Fixed | [54] |
Cw (Equivalent water thickness, cm) | 0.004 | 0.04 | - | - | Uniform | [12] |
Cdm (Dry matter content, g/m2) | 0.001 | 0.02 | - | - | Uniform | [55] |
Nstructer (Leaf structure) | 1.2 | 1.8 | 1.5 | 0.3 | Gauss | [55] |
LID (Leaf inclination distribution, deg) | 30 | 80 | 60 | 30 | Gauss | [56] |
LAI (Leaf area index, m2/m2) | 0.1 | 9 | 3.9 | 1.6 | Gauss | Measured dataset |
SL (Hot spot parameter) | 0.1 | 0.5 | 0.2 | 0.5 | Gauss | [57] |
θs (Solar zenith angle, deg) | 20 | 45 | - | - | Uniform | Measured dataset |
Rsoil (Soil brightness parameter) | 0.2 | 0.9 | 0.4 | 0.4 | Gauss | [58] |
3. Results
3.1. LNCs in the Field
3.2. Simulated and Measured Spectral Reflectance
3.3. LNC Prediction Results by the SI Method
3.4. LNC Prediction Results by the PLSR Method
3.5. LNC Prediction Results by the ANN Method
3.6. LNC Prediction Results by the ML-HM Method
4. Discussion
4.1. Comparison with Previous Studies
4.2. Best Structure for the Hybrid Method
4.3. Optimal LNC Prediction Method
4.4. Application Potential and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albornoz, F. Crop responses to nitrogen overfertilization: A review. Sci. Hortic. 2016, 205, 79–83. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, S.S.; Hoogenboom, G.; Paz, J.O. Remote sensing and geospatial technological applications for sits-specific management of fruit and nut crop: A review. Remote Sens. 2010, 2, 1973–1997. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Basu, M. Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Prog. Nat. Sci. 2009, 19, 659–666. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize canopy temperature extracted from UAV thermaland RGB imagery and its application in water stress monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- Shafian, S.; Rajan, N.; Schnell, R.; Bagavathiannan, M.; Valasek, J.; Shi, Y.; Olsenholler, J. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. PLoS ONE 2018, 13, e0196605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, T.; Guo, Y.; Skidmore, A.; Zhang, Z.; Tang, R.; Song, S.; Tang, Z. Estimating community-level plant functional traits in a species-rich alpine meadow using UAV image spectroscopy. Remote Sens. 2022, 14, 3399. [Google Scholar] [CrossRef]
- Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crop. Res. 2017, 210, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Arbian, J.; Chen, J.M.; Shang, J.; Liu, J. Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. Precis. Agric. 2020, 21, 856–880. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jin, X.; Wang, J.; Yang, G.; Nie, C.; Xu, X.; Feng, H. Estimating winter wheat (Triticum aestivum) LAI and leaf chlorophyll content from canopy reflectance data by integrating agronomic prior knowledge with the PROSAIL model. Int. J. Remote Sens. 2015, 36, 2634–2653. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, C.; Pu, R.; Feng, H.; Li, Z.; Li, H.L.; Sun, C. Leaf nitrogen spectral reflectance model of winter wheat (Triticum aestivum) based on PROSPECT: Simulation and inversion. J. Appl. Remote Sens. 2015, 9, 095976. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.; Yang, G.; Drummond, J.; Yang, H.; Clark, B.; Li, Z.; Zhao, C. Remote sensing of leaf and canopy nitrogen status in winter wheat (Triticum aestivum L.) based on N-PROSAIL model. Remote Sens. 2018, 10, 1463. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS-J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Durbha, S.S.; King, R.L.; Younan, N.H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 2007, 107, 348–361. [Google Scholar] [CrossRef]
- Annala, L.; Honkavarra, E.; Tuominen, S.; Pölönen, I. Chlorophyll concentration retrieval by training convolutional neural network for stochastic model of leaf optical properties (SLOP) inversion. Remote Sens. 2020, 12, 283. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Lu, J.; Zhang, N.; Yang, T.; He, J.; Yao, J.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models. ISPRS-J. Photogramm. Remote Sens. 2019, 150, 185–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Hui, J.; Qin, Q.; Sun, Y.; Zhang, T.; Hong, S.; Li, M. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sens. Environ. 2021, 267, 112724. [Google Scholar] [CrossRef]
- Jiao, Q.; Sun, Q.; Zhang, B.; Huang, W.; Ye, H.; Zhang, Z.; Zhang, X.; Qiang, B. A random forest algorithm for retrieving canopy chlorophyll content of wheat and soybean trained with PROSAIL simulation using adjusted average leaf angle. Remote Sens. 2022, 14, 98. [Google Scholar] [CrossRef]
- Svendsen, D.H.; Martino, L.; Campos-Taberner, M.; Garcia-Haro, F.J.; Camps-Valls, G. Joint gaussian processes for biophysical parameter retrieval. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1718–1727. [Google Scholar] [CrossRef] [Green Version]
- Baxter, J. A model of inductive bias learning. J. Artif. Intell. Res. 2000, 12, 149–198. [Google Scholar] [CrossRef] [Green Version]
- Thrun, S. Is Learning the n-th Thing Any Easier than Learning the First? In Proceedings of the Advances in Neural Information Processing Systems 8, NIPS, Denver, CO, USA, 27–30 November 1995; Touretzky, D.S., Mozer, M., Hasselmo, M.E., Eds.; MIT Press: Cambridge, MA, USA, 1995; pp. 640–646. [Google Scholar]
- Caruana, R. Multi task learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. 2018, 5, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Baxter, J. A bayesian/information theoretic model of learning to learn via multiple task sampling. Mach. Learn. 1997, 28, 7–39. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Wang, X.; Sun, B.; Liu, H.M. A PM2.5 concentration prediction model based on multi-task deep learning for intensive air quality monitoring stations. J. Clean. Prod. 2020, 275, 122722. [Google Scholar] [CrossRef]
- Liu, S.; Johns, E.; Davison, A.J. End-to-End multi-task learning with attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1871–1880. [Google Scholar]
- Chen, P.; Wang, F. Effect of crop spectra purification on plant nitrogen concentration estimations performed using high-spatial-resolution images obtained with unmanned aerial vehicles. Field Crop Res. 2022, 288, 108708. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Deering, D.; Schell, J.A.; Harlan, J. Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation. Environ. Sci. 1974, 1974, 1–37. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2002, 76, 156–172. [Google Scholar] [CrossRef]
- Haboudans, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Zhu, Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Fitzgerald, G.J.; Rodriguez, D.; Christensen, L.K.; Belford, R.; Sadras, V.O.; Clarke, T.R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric. 2006, 7, 233–248. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, D.J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2006, 27, 4159–4179. [Google Scholar] [CrossRef]
- Chen, P.; Haboudance, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Smith, A.M.S. Using in-situ measurements to evaluate the new RapideEyeTM satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens. 2007, 28, 4183–4190. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zaro-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Gitrlson, A.A.; Viña, A.; Cogand, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar]
- Chen, P.; Tremblay, N.; Wang, J.; Vigneault, P.; Huang, W.; Li, B. New index of crop canopy fresh biomass estimation. Spectrosc. Spectr. Anal. 2010, 30, 512–517. (In Chinese) [Google Scholar]
- Yang, B.; Wang, M.; Sha, Z.; Wang, B.; Chen, J.; Yao, X.; Cheng, T.; Cao, W. Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles. Sensors 2019, 19, 4416. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, G.; Shi, Y.; Xu, Z.; Yang, F.; Cao, Q. Validation of an unmanned aerial vehicle hyperspectral sensor and its application in maize leaf area index estimation. Sci. Agric. Sin. 2018, 51, 1464–1474. (In Chinese) [Google Scholar]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 512, 436–444. [Google Scholar] [CrossRef]
- Chen, P.; Wang, J.; Huang, W.; Tremblay, N.; Ou, Y.; Zhang, Q. Critical nitrogen curve and remote detection of nitrogen nutrition index for corn in the northwestern plain of shandong province, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 682–689. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 1990, 3, 551–560. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Fairbairn, D.; Li, N.; Xu, B.; Feng, H.; Yang, G. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Comput. Electron. Agric. 2019, 162, 174–182. [Google Scholar] [CrossRef]
- Narayanan, S.; Mannam, K.; Achan, P.; Ramesh, M.V.; Rangan, V.; Rajan, S. A contextual multi-task neural approach to medication and adverse events identification from clinical test. J. Biomed. Inform. 2022, 125, 103960. [Google Scholar] [CrossRef]
- Senthil, T.; Chinnasamy, R.; Jeevanandham, D. An improved optimization technique using deep neural networks for digit recognition. Soft Comput. 2021, 25, 1647–1658. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Peng, Z.; Huang, J.; Wang, C.; Jiang, H.; Zheng, Q.; Li, D. Phenology effects on physically based estimation of paddy rice canopy traits from UAV hyperspectral imagery. Remote Sens. 2021, 13, 1792. [Google Scholar] [CrossRef]
- Upreti, D.; Huang, W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A Comparison of hybrid machine learning algorithms for the retrieval of wheat biophysical variables from Sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, G.; Liu, Q.; Chen, Z.; Huang, C. Retrieval of winter wheat leaf area index from Chinese GF-1 satellite data using the PROSAIL model. Sensors 2018, 18, 1120. [Google Scholar] [CrossRef] [PubMed]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Di, L.; Wang, S.; Xu, L.; Wang, L.; Kang, J.; Li, L. Estimating crop LAI using spectral feature extraction and the hybrid inversion method. Remote Sens. 2020, 12, 3534. [Google Scholar] [CrossRef]
- Jia, M.; Colombo, R.; Rossini, M.; Celesti, M.; Zhu, J.; Cogliati, S.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales. Eur. J. Agron. 2021, 122, 126192. [Google Scholar] [CrossRef]
Index | Name | Formula | Developed by |
---|---|---|---|
NDVI | Normalized difference vegetation index | (R800 − R670)/(R800 + R670) | [28] |
GNDVI | Green normalized difference vegetation index | (R800 − R550)/(R800 + R550) | [29] |
MSAVI | Modified soil adjusted vegetation index | (2R800 + 1 − sqrt((2R800 + 1) − 8(R800 − R670)))/2 | [30] |
OSAVI | Optimized adjusted vegetation index | 1.16(R800 − R670)/(R800 + R670 + 0.16) | [31] |
EVI | Enhanced vegetation index | 2.5(R800 − R670)/(R800 + 6R670 − 7.5R490 + 1) | [32] |
TVI | Triangular vegetation index | 0.5(120(R750 − R550) − 200(R670 − R550)) | [33] |
MTVI2 | Modified triangular vegetation index 2 | 1.5(1.2(R800 − R550) − 2.5(R670 − R550))/sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5) | [34] |
RVI | Ratio vegetation index | R810/R560 | [35] |
NDRE | Normalized difference red-edge index | (R790 − R720)/(R790 + R720) | [36] |
VIopt | Optimal vegetation index | (1 + 0.45)((R800)2 + 1)/(R670 + 0.45) | [37] |
DNCI | Double peak canopy nitrogen index | (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) | [38] |
MCARI/MTVI2 | Combined index I † | MCARI/MTVI2 | [39] |
MCARI: (R700 − R670 − 0.2(R700 − R550))(R700/R670) | |||
MTVI2: 1.5(1.2(R800 − R550) − 2.5(R670 − R550))/sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5) | |||
MTCI | MERIS terrestrial chlorophyll index | (R750 − R710)/(R710 − R680) | [40] |
TCARI/OSAVI | Combined index II † | TCARI: 3((R700 − R670) − 0.2(R700 − R550)(R700/R670)) OSAVI: 1.16(R800 − R670)/(R800 + R670 + 0.16) | [41] |
REP | Red-edge position | 700 + 40(Rre − R700)/(R740 − R700) Rre: (R670 + R780)/2 | [42] |
R-M | Red model | R750/R720 − 1 | [43] |
RTVI | Red-edge triangular vegetation index | (100(R750 − R730) − 10(R750 − R550))sqrt(R700/R670) | [44] |
Growth Stage | Irrigation Treatment | N Fertilizer Treatment * | ||||
---|---|---|---|---|---|---|
N1 | N2 | N3 | N4 | N5 | ||
Feekes 4–5 | W1 | 28.65 a | 81.09 a,b | 116.40 b | 138.01 b | 137.66 b |
W2 | 45.26 a | 98.47 b | 131.78 b,c | 122.22 b,c | 144.31 c | |
Feekes 10.2 | W1 | 78.86 a | 114.45 a,b | 164.65 b,c | 142.07 b,c | 173.68 c |
W2 | 51.54 a | 70.66 a | 124.96 b | 140.28 b | 154.72 b | |
Feekes 11.1 | W1 | 59.05 a | 64.85 a,b | 115.29 a,b | 153.08 b | 119.18 a,b |
W2 | 28.21 a | 63.49 b | 114.81 c | 141.14 c | 118.35 c |
SI | Model Type | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (μg/cm2) | RMSE% | R2 | RMSE (μg/cm2) | RMSE% | ||
MCARI/MTVI2 | Exponential | 0.68 | 29.86 | 26.66% | 0.68 | 25.25 | 23.23% |
TCARI/OSAVI | Exponential | 0.65 | 31.26 | 27.91% | 0.68 | 25.69 | 23.63% |
MTCI | Logarithmic | 0.56 | 30.20 | 26.96% | 0.70 | 23.86 | 21.95% |
REP | Linear | 0.57 | 29.98 | 26.77% | 0.68 | 25.06 | 23.05% |
RM | Logarithmic | 0.52 | 31.53 | 28.15% | 0.66 | 25.37 | 23.34% |
NDRE | Logarithmic | 0.53 | 31.44 | 28.07% | 0.65 | 25.75 | 23.68% |
GNDVI | Logarithmic | 0.51 | 31.91 | 28.49% | 0.65 | 26.02 | 23.93% |
DCNI | Logarithmic | 0.51 | 31.94 | 28.52% | 0.64 | 26.49 | 24.37% |
NDVI | Logarithmic | 0.48 | 33.09 | 29.54% | 0.61 | 27.50 | 25.29% |
VIopt | Logarithmic | 0.46 | 33.64 | 30.03% | 0.60 | 28.09 | 25.84% |
RTVI | Power | 0.54 | 35.26 | 31.48% | 0.49 | 28.33 | 26.06% |
OSAVI | Logarithmic | 0.43 | 34.35 | 30.67% | 0.56 | 29.15 | 26.81% |
RVI | Logarithmic | 0.40 | 35.45 | 31.65% | 0.57 | 29.10 | 26.77% |
MTVI2 | Logarithmic | 0.37 | 36.22 | 32.34% | 0.51 | 30.90 | 28.42% |
EVI | Logarithmic | 0.35 | 36.85 | 32.90% | 0.50 | 31.60 | 29.07% |
MSAVI | Logarithmic | 0.33 | 37.41 | 33.40% | 0.48 | 32.20 | 29.62% |
TVI | Logarithmic | 0.29 | 38.52 | 34.39% | 0.43 | 33.55 | 30.86% |
Model Type | Calibration | Validation | ||||
---|---|---|---|---|---|---|
R2 | RMSE (μg/cm2) | RMSE% | R2 | RMSE (μg/cm2) | RMSE% | |
Single-task method I | 0.89 | 13.26 | 11.90% | 0.68 | 24.56 | 22.59% |
Single-task method II | 0.88 | 14.34 | 12.88% | 0.22 | 38.58 | 35.49% |
Single-task method III | 0.70 | 24.93 | 18.65% | 0.71 | 23.77 | 21.86% |
ML-HM method (this study) | 0.79 | 20.86 | 18.63% | 0.82 | 18.40 | 16.92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Chen, P.; Jin, X. Predicting Wheat Leaf Nitrogen Content by Combining Deep Multitask Learning and a Mechanistic Model Using UAV Hyperspectral Images. Remote Sens. 2022, 14, 6334. https://doi.org/10.3390/rs14246334
Ma X, Chen P, Jin X. Predicting Wheat Leaf Nitrogen Content by Combining Deep Multitask Learning and a Mechanistic Model Using UAV Hyperspectral Images. Remote Sensing. 2022; 14(24):6334. https://doi.org/10.3390/rs14246334
Chicago/Turabian StyleMa, Xiao, Pengfei Chen, and Xiuliang Jin. 2022. "Predicting Wheat Leaf Nitrogen Content by Combining Deep Multitask Learning and a Mechanistic Model Using UAV Hyperspectral Images" Remote Sensing 14, no. 24: 6334. https://doi.org/10.3390/rs14246334
APA StyleMa, X., Chen, P., & Jin, X. (2022). Predicting Wheat Leaf Nitrogen Content by Combining Deep Multitask Learning and a Mechanistic Model Using UAV Hyperspectral Images. Remote Sensing, 14(24), 6334. https://doi.org/10.3390/rs14246334