Entropy-Based Non-Local Means Filter for Single-Look SAR Speckle Reduction
Abstract
:1. Introduction
- Assessing and solving numerical errors that may appear when inverting the Fisher information matrix;
- Using a smooth transformation between p-values and weights that improves the results;
- Evaluating the filter performance with a metric that takes into account first- and second-order statistics;
- Applications to actual SAR images;
- Comparisons with state-of-the-art filters.
2. The Distribution
3. Entropies for the Distribution
- Shannon entropy: and ; and
- Rényi entropy: and , with .
3.1. Asymptotic Entropy Distribution
3.2. Hypothesis Testing Based on h- Entropies
4. Speckle Reduction by Comparing Entropies
Algorithm 1 Despeckling by similarity of entropies. |
|
5. Filter Quality
5.1. First-Order Statistic
5.2. Second-Order Statistic
6. Results
6.1. Simulated Data
6.2. Data from Actual Sensors
7. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Computational Information
References
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Raleigh, NC, USA, 2004. [Google Scholar]
- Duskunovic, I.; Heene, G.; Philips, W.; Bruyland, I. Urban area detection in SAR imagery using a new speckle reduction technique and Markov random field texture classification. Int. Geosci. Remote. Sens. Symp. 2000, 2, 636–638. [Google Scholar] [CrossRef]
- Gambini, J.; Cassetti, J.; Lucini, M.; Frery, A. Parameter Estimation in SAR Imagery using Stochastic Distances and Asymmetric Kernels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 365–375. [Google Scholar] [CrossRef]
- Rojo, J. Heavy-tailed densities. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 30–40. [Google Scholar] [CrossRef]
- Gao, G. Statistical modeling of SAR images: A survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef]
- Lee, J.S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Patternanalysis Mach. Intell. 1980, 2, 165–168. [Google Scholar] [CrossRef]
- Lee, J.S. Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 1981, 15, 380–389. [Google Scholar] [CrossRef]
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 202–213. [Google Scholar]
- Kuan, D.; Sawchuk, A.; Strand, T.; Chavel, P. Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 373–383. [Google Scholar] [CrossRef]
- Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Maximum a posteriori speckle filtering and first order texture models in SAR images. In Proceedings of the 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, USA, 20–24 May 1990; pp. 2409–2412. [Google Scholar]
- Touzi, R. A review of speckle filtering in the context of estimation theory. IEEE Trans. Geosci. Remote Sens. 2002, 4, 2392–2404. [Google Scholar] [CrossRef]
- Lattari, F.; Gonzalez Leon, B.; Asaro, F.; Rucci, A.; Prati, C.; Matteucci, M. Deep Learning for SAR Image Despeckling. Remote Sens. 2019, 11, 1532. [Google Scholar] [CrossRef]
- Moschetti, E.; Palacio, M.G.; Picco, M.; Bustos, O.H.; Frery, A.C. On the use of Lee’s protocol for speckle-reduncing techniques. Lat. Am. Appl. Res. 2006, 36, 115–121. [Google Scholar]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef]
- Yu, Y.; Acton, S.T. Speckle Reducing Anisotropic Diffusion. IEEE Trans. Image Process. 2002, 11, 1260–1270. [Google Scholar]
- Cozzolino, D.; Parrilli, S.; Scarpa, G.; Poggi, G.; Verdoliva, L. Fast Adaptive Nonlocal SAR Despeckling. IEEE Geosci. Remote. Sens. Lett. 2014, 11, 524–528. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J. A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Duval, V.; Aujol, J.F.; Gousseau, Y. A Bias-Variance Approach for the Nonlocal Means. SIAM J. Imaging Sci. 2011, 4, 760–788. [Google Scholar] [CrossRef]
- Delon, J.; Desolneux, A. A Patch-Based Approach for Removing Impulse or Mixed Gaussian-Impulse Noise. SIAM J. Imaging Sci. 2013, 6, 1140–1174. [Google Scholar] [CrossRef]
- Lebrun, M.; Buades, A.; Morel, J. A Nonlocal Bayesian Image Denoising Algorithm. SIAM J. Imaging Sci. 2013, 6, 1665–1688. [Google Scholar] [CrossRef]
- Torres, L.; Sant’Anna, S.J.S.; Freitas, C.C.; Frery, A.C. Speckle Reduction in Polarimetric SAR Imagery with Stochastic Distances and Nonlocal Means. Pattern Recognit. 2014, 47, 141–157. [Google Scholar] [CrossRef]
- Ferraioli, G.; Pascazio, V.; Schirinzi, G. Ratio-Based Nonlocal Anisotropic Despeckling Approach for SAR Images. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 7785–7798. [Google Scholar] [CrossRef]
- Aghababaei, H.; Ferraioli, G.; Vitale, S.; Zamani, R.; Schirinzi, G.; Pascazio, V. Non Local Model Free Denoising Algorithm for Single and Multi-Channel SAR Data. IEEE Trans. Geosci. Remote. Sens. 2021, in press. [CrossRef]
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote. Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef]
- Gómez Déniz, L.; Ospina, R.; Frery, A.C. Unassisted Quantitative Evaluation of Despeckling Filters. Remote Sens. 2017, 9, 389. [Google Scholar] [CrossRef]
- Yue, D.X.; Xu, F.; Frery, A.C.; Jin, Y.Q. SAR Image Statistical Modeling Part I: Single-Pixel Statistical Models. IEEE Geosci. Remote. Sens. Mag. 2021, 9, 82–114. [Google Scholar] [CrossRef]
- Yue, D.X.; Xu, F.; Frery, A.C.; Jin, Y.Q. SAR Image Statistical Modeling Part II: Spatial Correlation Models and Simulation. IEEE Geosci. Remote. Sens. Mag. 2021, 9, 115–138. [Google Scholar] [CrossRef]
- Frery, A.; Müller, H.; Yanasse, C.; Sant’Anna, S. A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote. Sens. 1997, 35, 648–659. [Google Scholar] [CrossRef]
- Mejail, M.; Jacobo-Berlles, J.C.; Frery, A.C.; Bustos, O.H. Classification of SAR images using a general and tractable multiplicative model. Int. J. Remote. Sens. 2003, 24, 3565–3582. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Nascimento, A.D.C.; Frery, A.C.; Cintra, R.J. Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 1380–1392. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Rényi, A. On Measures of Entropy and Information. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561. [Google Scholar]
- Chan, D.; Gambini, J.; Frery, A.C. Speckle Noise Reduction In SAR Images Using Information Theory. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 456–461. [Google Scholar] [CrossRef]
- Salicrú, M.; Morales, D.; Menéndez, M.L.; Pardo, L. On the Applications of Divergence Type Measures in Testing Statistical Hypotheses. J. Multivar. Anal. 1994, 51, 372–391. [Google Scholar] [CrossRef]
- Yue, D.X.; Xu, F.; Frery, A.C.; Jin, Y.Q. A Generalized Gaussian Coherent Scatterer Model for Correlated SAR Texture. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 2947–2964. [Google Scholar] [CrossRef]
- Chan, D.; Rey, A.; Gambini, J.; Frery, A.C. Sampling from the distribution. Monte Carlo Methods Appl. 2018, 24, 271–287. [Google Scholar] [CrossRef]
- Salicrú, M.; Menéndez, M.L.; Pardo, L. Asymptotic distribution of (h;ϕ)-entropy. Commun. Stat. Theory Methods 1993, 22, 2015–2031. [Google Scholar] [CrossRef]
- Pardo, L.; Morales, D.; Salicrú, M.; Menéndez, M. Large sample behavior of entropy measures when parameters are estimated. Commun. Stat. Theory Methods 1997, 26, 483–501. [Google Scholar] [CrossRef]
- Frery, A.C.; Cintra, R.J.; Nascimento, A.D.C. Entropy-Based Statistical Analysis of PolSAR Data. IEEE Trans. Geosci. Remote. Sens. 2013, 51, 3733–3743. [Google Scholar] [CrossRef]
- Frery, A.C.; Cribari-Neto, F.; de Souza, M.O. Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP J. Adv. Signal Process. 2004, 2004, 375370. [Google Scholar] [CrossRef]
- Wang, T.; Guan, S.U.; Liu, F. Entropic Feature Discrimination Ability for Pattern Classification Based on Neural IAL. In Advances in Neural Networks—ISNN 2012; Wang, J., Yen, G.G., Polycarpou, M.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 30–37. [Google Scholar] [CrossRef]
- Cochran, W.G. The distribution of quadratic forms in a normal system, with applications to the analysis of covariance. Math. Proc. Camb. Philos. Soc. 1934, 30, 178–191. [Google Scholar] [CrossRef]
- Nascimento, A.D.C.; Horta, M.M.; Frery, A.C.; Cintra, R.J. Comparing Edge Detection Methods Based on Stochastic Entropies and Distances for PolSAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 648–663. [Google Scholar] [CrossRef]
- Ebert, D. Texturing & Modeling: A Procedural Approach; Morgan Kaufmann: San Francisco, CA, USA, 2003. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man, Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Gomez, L.; Alvarez, L.; Mazorra, L.; Frery, A.C. Fully PolSAR image classification using machine learning techniques and reaction-diffusion systems. Neurocomputing 2017, 255, 52–60. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
Filter | |||||
---|---|---|---|---|---|
SRAD | |||||
Enhanced Lee | |||||
FANS | |||||
Shannon Entropy | |||||
Rényi Entropy |
Left | Right | ||||
---|---|---|---|---|---|
Top | Background | 1 | 5 | ||
Stripes | 9 | 50 | |||
Bottom | Background | 20 | 10 | ||
Stripes | 80 | 250 |
Filter | |||||
---|---|---|---|---|---|
Shannon Entropy | |||||
Rényi Entropy |
Filter | |||||
---|---|---|---|---|---|
SRAD | |||||
Enhanced Lee | |||||
FANS | |||||
Shannon Entropy | |||||
Rényi Entropy |
Filter | |||||
---|---|---|---|---|---|
Shannon Entropy | |||||
Rényi Entropy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, D.; Gambini, J.; Frery, A.C. Entropy-Based Non-Local Means Filter for Single-Look SAR Speckle Reduction. Remote Sens. 2022, 14, 509. https://doi.org/10.3390/rs14030509
Chan D, Gambini J, Frery AC. Entropy-Based Non-Local Means Filter for Single-Look SAR Speckle Reduction. Remote Sensing. 2022; 14(3):509. https://doi.org/10.3390/rs14030509
Chicago/Turabian StyleChan, Debora, Juliana Gambini, and Alejandro C. Frery. 2022. "Entropy-Based Non-Local Means Filter for Single-Look SAR Speckle Reduction" Remote Sensing 14, no. 3: 509. https://doi.org/10.3390/rs14030509
APA StyleChan, D., Gambini, J., & Frery, A. C. (2022). Entropy-Based Non-Local Means Filter for Single-Look SAR Speckle Reduction. Remote Sensing, 14(3), 509. https://doi.org/10.3390/rs14030509