A New Type of Red-Green-Blue Composite and Its Application in Tropical Cyclone Center Positioning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Best-Track Datasets
2.1.2. Vertical Wind Shear from Reanalysis Data
2.1.3. Himawari-8 Observations
2.2. Design of TC-RGB Composites
2.3. Application of TC-RGB Composites in TC Center Positioning
2.3.1. Guidelines for Using TC-RGB Composites in TC Center Positioning
2.3.2. Typical Examples
3. Results
3.1. Case Analysis
3.2. Overall Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Preliminary Validation of the TC-RGB-Based Method
References
- Anthes, R.A. Structure and Life Cycle of Tropical Cyclones. In Tropical Cyclones: Their Evolution, Structure and Effects, 2nd ed.; American Meteorological Society: Boston, MA, USA, 1982; Volume 19, pp. 11–64. [Google Scholar]
- Zhang, Q.; Wu, L.; Liu, Q. Tropical cyclone damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Tropical cyclones: Global trends in human exposure, vulnerability and risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Elsberry, R.L. Advances in research and forecasting of tropical cyclones from 1963–2013. Asia-Pac. J. Atmos. Sci. 2014, 50, 3–16. [Google Scholar] [CrossRef]
- Rappaport, E.N.; Franklin, J.L.; Avila, L.A.; Baig, S.R.; Beven, J.L.; Blake, E.S.; Burr, C.A.; Jiing, J.-G.; Juckins, C.A.; Knabb, R.D.; et al. Advances and Challenges at the National Hurricane Center. Weather Forecast. 2009, 24, 395–419. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, H.E.; Chelmow, M.B. Objective determination of hurricane tracks from aircraft observations. Mon. Weather Rev. 1982, 110, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Xiao, Q. Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci. 2000, 57, 836–860. [Google Scholar] [CrossRef] [Green Version]
- Rozoff, C.M.; Velden, C.S.; Kaplan, J.; Kossin, J.P.; Wimmers, A.J. Improvements in the Probabilistic Prediction of Tropical Cyclone Rapid Intensification with Passive Microwave Observations. Weather Forecast. 2015, 30, 1016–1038. [Google Scholar] [CrossRef]
- Zhuge, X.-Y.; Jian, G.; Yu, F.; Wang, Y. A New Satellite-Based Indicator for Estimation of the Western North Pacific Tropical Cyclone Current Intensity. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5661–5676. [Google Scholar] [CrossRef]
- Zhuge, X.-Y.; Ming, J.; Wang, Y. Reassessing the Use of Inner-Core Hot Towers to Predict Tropical Cyclone Rapid Intensification. Weather Forecast. 2015, 30, 1265–1279. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.M.; Bonaldo, D.; Cioni, G.; Rizza, U.; Carniel, S. Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea. Atmosphere 2019, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Hock, T.F.; Franklin, J.L. The NCAR GPS Dropwindsonde. Bull. Am. Meteorol. Soc. 1999, 80, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Uhlhorn, E.W.; Black, P.G.; Franklin, J.L.; Goodberlet, M.; Carswell, J.; Goldstein, A.S. Hurricane Surface Wind Measurements from an Operational Stepped Frequency Microwave Radiometer. Mon. Weather Rev. 2007, 135, 3070–3085. [Google Scholar] [CrossRef] [Green Version]
- Griffin, J.S.; Burpee, R.W.; Marks Jr, F.D.; Franklin, J.L. Real-time airborne analysis of aircraft data supporting operational hurricane forecasting. Weather Forecast. 1992, 7, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.M.; Lee, W.-C. Objective Tropical Cyclone Center Tracking Using Single-Doppler Radar. J. Appl. Meteorol. Climatol. 2012, 51, 878–896. [Google Scholar] [CrossRef] [Green Version]
- Wood, V.T. A technique for detecting a tropical cyclone center using a Doppler radar. J. Atmos. Ocean. Tech. 1994, 11, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Velden, C.S.; Olander, T.L.; Zehr, R.M. Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Weather Forecast. 1998, 13, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Wimmers, A.J.; Velden, C.S. Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery. J. Appl. Meteorol. Climatol. 2010, 49, 2013–2034. [Google Scholar] [CrossRef]
- Wimmers, A.J.; Velden, C.S. Advancements in Objective Multisatellite Tropical Cyclone Center Fixing. J. Appl. Meteorol. Climatol. 2016, 55, 197–212. [Google Scholar] [CrossRef]
- Olander, T.L.; Velden, C.S. The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery. Weather Forecast. 2007, 22, 287–298. [Google Scholar] [CrossRef]
- Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J.; Ricciardulli, L. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J. Geophys. Res. Ocean. 2014, 119, 6499–6522. [Google Scholar] [CrossRef]
- Mayers, D.; Ruf, C. Tropical Cyclone Center Fix Using CYGNSS Winds. J. Appl. Meteorol. Climatol. 2019, 58, 1993–2003. [Google Scholar] [CrossRef]
- Mayers, D.; Ruf, C. MTrack: Improved Center Fix of Tropical Cyclones from SMAP Wind Observations. Bull. Am. Meteorol. Soc. 2021, 102, E700–E709. [Google Scholar] [CrossRef]
- Lee, T.E.; Miller, S.D.; Turk, F.J.; Schueler, C.; Julian, R.; Deyo, S.; Dills, P.; Wang, S. The NPOESS VIIRS day/night visible sensor. Bull. Am. Meteorol. Soc. 2006, 87, 191–200. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Li, X.; Zhang, J.A. A Hurricane Morphology and Sea Surface Wind Vector Estimation Model Based on C-Band Cross-Polarization SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1743–1751. [Google Scholar] [CrossRef]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2012, 109, 15706–15711. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Straka, W.C.; Yue, J.; Seaman, C.J.; Xu, S.; Elvidge, C.D.; Hoffmann, L.; Azeem, I. The Dark Side of Hurricane Matthew: Unique Perspectives from the VIIRS Day/Night Band. Bull. Am. Meteorol. Soc. 2018, 99, 2561–2574. [Google Scholar] [CrossRef]
- Schueler, C.F.; Clement, J.E.; Ardanuy, P.E.; Welsch, C.; DeLuccia, F.; Swenson, H. NPOESS VIIRS Sensor Design Overview. In Proceedings of the Earth Observing Systems VI, San Diego, CA, USA, 1–3 August 2001; pp. 11–23. [Google Scholar]
- Lensky, I.; Rosenfeld, D. Clouds-aerosols-precipitation satellite analysis tool (CAPSAT). Atmos. Chem. Phys. 2008, 8, 6739–6753. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, J.D.; Solbrig, J.E.; Miller, S.D.; Surratt, M.; Lee, T.F.; Bankert, R.L.; Richardson, K. Tropical Cyclone Characterization via Nocturnal Low-Light Visible Illumination. Bull. Am. Meteorol. Soc. 2017, 98, 2351–2365. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-J.; Wang, Y.; Wu, L. Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res. 2010, 115, D12128. [Google Scholar] [CrossRef] [Green Version]
- JTWC. Annual Tropical Cyclone Report 2017. 2017. Available online: http://www.metoc.navy.mil/jtwc/products/atcr/2017atcr.pdf (accessed on 16 March 2021).
- Simpson, R.H.; Saffir, H. The hurricane disaster potential scale. Weatherwise 1974, 27, 169. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- DeMaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Zhuge, X.; Zou, X.; Wang, Y. Determining AHI Cloud-Top Phase and Intercomparisons with MODIS Products Over North Pacific. IEEE Trans. Geosci. Remote Sens. 2021, 59, 436–448. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X.; Wang, Y. AHI-Derived Daytime Cloud Optical/Microphysical Properties and Their Evaluations with the Collection-6.1 MOD06 Product. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6431–6450. [Google Scholar] [CrossRef]
- Tomasi, C.; Petkov, B.; Mazzola, M.; Ritter, C.; di Sarra, A.; di Iorio, T.; del Guasta, M. Seasonal Variations of the Relative Optical Air Mass Function for Background Aerosol and Thin Cirrus Clouds at Arctic and Antarctic Sites. Remote Sens. 2015, 7, 7157–7180. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T. A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res. Atmos. 1987, 92, 3991–4000. [Google Scholar] [CrossRef]
- Ellrod, G.P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Weather Forecast. 1995, 10, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Yamanouchi, T.; Kawaguchi, S. Cloud distribution in the Antarctic from AVHRR data and radiation measurements at the surface. Int. J. Remote Sens. 1992, 13, 111–127. [Google Scholar] [CrossRef]
- Dvorak, V.F. Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery. Mon. Weather Rev. 1975, 103, 420–430. [Google Scholar] [CrossRef]
- Willoughby, H.E. A Possible Mechanism for the Formation of Hurricane Rainbands. J. Atmos. Sci. 1978, 35, 838–848. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yu, H.; Yang, X.; Li, X.; Tang, J. A new technique for automatically locating the center of tropical cyclones with multi-band cloud imagery. Front. Earth Sci. 2019, 13, 836–847. [Google Scholar] [CrossRef]
- Vicente, G.A.; Davenport, J.C.; Scofield, R.A. The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens. 2010, 23, 221–230. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B.; Knaff, J.; Zhao, Y.; Zhang, B.; Combot, C. Copolarized and Cross-Polarized SAR Measurements for High-Resolution Description of Major Hurricane Wind Structures: Application to Irma Category 5 Hurricane. J. Geophys. Res. Ocean. 2019, 124, 3905–3922. [Google Scholar] [CrossRef]
- Guosheng, Z.; Biao, Z.; Perrie, W.; Qing, X.; Yijun, H. A Hurricane Tangential Wind Profile Estimation Method for C-Band Cross-Polarization SAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7186–7194. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. Combined Co- and Cross-Polarized SAR Measurements Under Extreme Wind Conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6746–6755. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; Kucas, M.E.; Slocum, C.J.; Brennan, M.J.; Meissner, T.; Ricciardulli, L.; Mouche, A.; Reul, N.; Morris, M.; et al. Estimating tropical cyclone surface winds: Current status, emerging technologies, historical evolution, and a look to the future. Trop. Cyclone Res. Rev. 2021, 10, 125–150. [Google Scholar] [CrossRef]
Day Mode | A0.4 | A0.4 | T10.4 | Color | |
(0, 1) | (0, 1) | (203 K, 323 K) | |||
Sea | 0.08 | 0.08 | 295 K | ||
Land | 0.21 | 0.21 | 300 K | ||
Cirrus | 0.3 | 0.3 | 260 K | ||
Deep Cb | 0.96 | 0.96 | 200 K | ||
Low cloud | 0.86 | 0.86 | 290 K | ||
Night Mode | T12.3–10.4 | T10.4–3.9 | T10.4 | Color | |
(−4 K, 2 K) | (−5 K, 5 K) | (203 K, 323 K) | |||
Sea | Summer | −3.5 K | −1.1 K | 295 K | |
Winter | −2.7 K | 0.1 K | 288 K | ||
Land | Summer | −1.2 K | 0.8 K | 292 K | |
Winter | 0 K | 0.9 K | 270 K | ||
Cirrus | −4.5 K | −11.5 K | 255 K | ||
Deep Cb | 0.7 K | −8.5 K | 205 K | ||
Low cloud | −2.1 K | 3.5 K | 280 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhuge, X.; Tang, X.; Song, J.; Wang, Y. A New Type of Red-Green-Blue Composite and Its Application in Tropical Cyclone Center Positioning. Remote Sens. 2022, 14, 539. https://doi.org/10.3390/rs14030539
Chen L, Zhuge X, Tang X, Song J, Wang Y. A New Type of Red-Green-Blue Composite and Its Application in Tropical Cyclone Center Positioning. Remote Sensing. 2022; 14(3):539. https://doi.org/10.3390/rs14030539
Chicago/Turabian StyleChen, Liren, Xiaoyong Zhuge, Xiaodong Tang, Jinjie Song, and Yuan Wang. 2022. "A New Type of Red-Green-Blue Composite and Its Application in Tropical Cyclone Center Positioning" Remote Sensing 14, no. 3: 539. https://doi.org/10.3390/rs14030539
APA StyleChen, L., Zhuge, X., Tang, X., Song, J., & Wang, Y. (2022). A New Type of Red-Green-Blue Composite and Its Application in Tropical Cyclone Center Positioning. Remote Sensing, 14(3), 539. https://doi.org/10.3390/rs14030539