Assessment of Drought Indexes on Different Time Scales: A Case in Semiarid Mediterranean Grasslands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Plot Selection
2.2. Satellite Data and Vegetation Index Calculations
2.3. Climatic Data
2.4. Standardised Indexes
2.4.1. Standardised Precipitation Index
2.4.2. Standardised Precipitation Evapotranspiration Index
2.4.3. Standardised Vegetation Index
2.5. Correlation Analysis
2.6. Classification and Quantification of Drought Episodes
3. Results
3.1. Descriptive Statistics
3.2. Standardised Indexes Time Series
3.3. Correlation Analysis
3.4. Drought Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems---Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000; ISBN 1569734615. [Google Scholar]
- Eurostat Utilised Agricultural Area by Categories-Permanent Grasslands. 2021. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00025/default/table?lang=en (accessed on 4 December 2021).
- Vicente-Serrano, S.; Azorin-Molina, C.; Peña-Gallardo, M.; Tomas-Burguera, M.; Domínguez-Castro, F.; Martin-Hernández, N.; Beguería, S.; El Kenawy, A.; Noguera, I.; García, M. A High-Resolution Spatial Assessment of the Impacts of Drought Variability on Vegetation Activity in Spain from 1981 to 2015. Nat. Hazards Earth Syst. Sci. 2019, 19, 1189–1213. [Google Scholar] [CrossRef] [Green Version]
- Scheuring, I.; Riedi, R.H. Application of Multifractals to the Analysis of Vegetation Pattern. J. Veg. Sci. 1994, 5, 489–496. [Google Scholar] [CrossRef]
- Martín-Sotoca, J.J.; Saa-Requejo, A.; Moratiel, R.; Dalezios, N.; Faraslis, I.; Tarquis, A.M. Statistical Analysis for Satellite-Index-Based Insurance to Define Damaged Pasture Thresholds. Nat. Hazards Earth Syst. Sci. 2019, 19, 1685–1702. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Zhu, W.; Schwartz, M.W.; Ganjurjav, H.; Wan, Y.; Qin, X.; Ma, X.; Williamson, M.A.; Li, Y. Climatic Change Controls Productivity Variation in Global Grasslands. Sci. Rep. 2016, 6, 26958. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Loukas, A.; Vasiliades, L.; Dalezios, N.R. Intercomparison of Meteorological Drought Indices for Drought Assessment and Monitoring in Greece. In Proceedings of the 8th International Conference on Environmental Science and Technology, Lemnos Island, Greece, 8–10 September 2003; Volume B, pp. 484–491. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Gabriel, H.F.; Rana, T. Standard Precipitation Index to Track Drought and Assess Impact of Rainfall on Watertables in Irrigation Areas. Irrig. Drain. Syst. 2008, 22, 159–177. [Google Scholar] [CrossRef]
- Zarei, A.R.; Shabani, A.; Moghimi, M.M. Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions. Pure Appl. Geophys. 2021, 178, 1387–1403. [Google Scholar] [CrossRef]
- Hadri, A.; Saidi, M.E.M.; Boudhar, A. Multiscale Drought Monitoring and Comparison Using Remote Sensing in a Mediterranean arid Region: A Case Study from West-Central Morocco. Arab. J. Geosci. 2021, 14, 118. [Google Scholar] [CrossRef]
- Li, W.; Fu, R.; Juárez, R.I.N.; Fernandes, K. Observed Change of the Standardized Precipitation Index, Its Potential Cause and Implications to Future Climate Change in the Amazon Region. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Yang, J.; Li, M. Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Li, C.; Leal Filho, W.; Yin, J.; Hu, R.; Wang, J.; Yang, C.; Yin, S.; Bao, Y.; Ayal, D.Y. Assessing Vegetation Response to Multi-Time-Scale Drought across Inner Mongolia Plateau. J. Clean. Prod. 2018, 179, 210–216. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, C.; Cai, Y.; Yang, Z.; Yi, Y. NDVI Dynamics under Changing Meteorological Factors in a Shallow Lake in Future Metropolitan, Semiarid Area in North China. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, S.; Yang, H.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatio-Temporal Dynamics of Vegetation Coverage and Its Relationship with Climate Factors in Inner Mongolia, China. J. Geogr. Sci. 2013, 23, 231–246. [Google Scholar] [CrossRef]
- Kang, W.; Wang, T.; Liu, S. The Response of Vegetation Phenology and Productivity to Drought in Semi-Arid Regions of Northern China. Remote Sens. 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- An, Q.; He, H.; Nie, Q.; Cui, Y.; Gao, J.; Wei, C.; Xie, X.; You, J. Spatial and Temporal Variations of Drought in Inner Mongolia, China. Water 2020, 12, 1715. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Singh, V.P.; Shi, P. Response of Vegetation to Different Time-Scales Drought across China: Spatiotemporal Patterns, Causes and Implications. Glob. Planet. Chang. 2017, 152, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Middleton, N.; Thomas, D. World Atlas of Desertification; Arnold, E., Ed.; Wiley: London, UK, 1992; ISBN 0340555122. [Google Scholar]
- Livada, I.; Assimakopoulos, V.D. Spatial and Temporal Analysis of Drought in Greece Using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2007, 89, 143–153. [Google Scholar] [CrossRef]
- Dong, J.; Liu, J.; Zhang, G.; Basara, J.B.; Greene, S.; Xiao, X. Climate Change Affecting Temperature and Aridity Zones: A Case Study in Eastern Inner Mongolia, China from 1960–2008. Theor. Appl. Climatol. 2013, 113, 561–572. [Google Scholar] [CrossRef]
- Bannayan, M.; Sanjani, S.; Alizadeh, A.; Lotfabadi, S.S.; Mohamadian, A. Association between Climate Indices, Aridity Index, and Rainfed Crop Yield in Northeast of Iran. F. Crop. Res. 2010, 118, 105–114. [Google Scholar] [CrossRef]
- Sanz, E.; Saa-Requejo, A.; Díaz-Ambrona, C.H.; Ruiz-Ramos, M.; Rodríguez, A.; Iglesias, E.; Esteve, P.; Soriano, B.; Tarquis, A.M. Normalized Difference Vegetation Index Temporal Responses to Temperature and Precipitation in Arid Rangelands. Remote Sens. 2021, 13, 840. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhou, G. Estimating Green Biomass Ratio with Remote Sensing in Arid Grasslands. Ecol. Indic. 2019, 98, 568–574. [Google Scholar] [CrossRef]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 2020, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Rover, J.; Brown, J.; Worstell, B.; Howard, D.; Wu, Z.; Gallant, A.L.; Rundquist, B.; Burke, M. Monitoring Landscape Dynamics in Central U.S. Grasslands with Harmonized Landsat-8 and Sentinel-2 Time Series Data. Remote Sens. 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Tsunekawa, A.; Tsubo, M. Index-Based Assessment of Agricultural Drought in a Semi-Arid Region of Inner Mongolia, China. J. Arid Land 2014, 6, 3–15. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI Anomaly for Drought Monitoring and Its Correlation with Climate Factors over Mongolia from 2000 to 2016. J. Arid Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Meroni, M.; Fasbender, D.; Rembold, F.; Atzberger, C.; Klisch, A. Near Real-Time Vegetation Anomaly Detection with MODIS NDVI: Timeliness vs. Accuracy and Effect of Anomaly Computation Options. Remote Sens. Environ. 2019, 221, 508–521. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Analysis of the Long-Term Agricultural Drought Onset, Cessation, Duration, Frequency, Severity and Spatial Extent Using Vegetation Health Index (VHI) in Raya and Its Environs, Northern Ethiopia. Environ. Syst. Res. 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Sp. Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Almeida-Ñauñay, A.F.; Benito, R.M.; Quemada, M.; Losada, J.C.; Tarquis, A.M. Recurrence Plots for Quantifying the Vegetation Indices Dynamics in a Semi-Arid Grassland. Geoderma 2022, 406, 115488. [Google Scholar] [CrossRef]
- Peco, B.; Sánchez, A.M.; Azcárate, F.M. Abandonment in Grazing Systems: Consequences for Vegetation and Soil. Agric. Ecosyst. Environ. 2006, 113, 284–294. [Google Scholar] [CrossRef]
- San Miguel-Ayanz, A.; Barbeito Sanchez, I.; Roig Gomez, S.; Rodríguez Rojo, M.P. Los Pastos en la Comunidad de Madrid. Tipología, Cartografía y Evaluación; Dirección General de Medio Ambiente. Conserjería de Medio Ambiente, Vivienda y Ordenación del Territorio: Madrid, Spain, 2009. [Google Scholar]
- Schmid, T.; Millán, R.; Lago, C.; Trueba, C. Caracterización Edafológica e Índices de Vulnerabilidad de la Comunidad Autónoma de Madrid. Escala 1:200.000; Editorial CIEMAT: Madrid, Spain, 2000. [Google Scholar]
- WBRS. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; IUSS Working Group WRB, Ed.; FAO: Rome, Italy, 2014; ISBN 9789251083697. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Sanz, E.; Saa-requejo, A.; Díaz-ambrona, C.H.; Ruiz-ramos, M.; Rodríguez, A.; Iglesias, E.; Esteve, P.; Soriano, B.; Tarquis, A.M. Generalized Structure Functions and Multifractal Detrended Fluctuation Analysis Applied to Vegetation Index Time Series: An Arid Rangeland Study. Entropy 2021, 23, 576. [Google Scholar] [CrossRef]
- Vermote, E.F. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006 2015. Available online: https://doi.org/10.5067/MODIS/MOD09A1.006 (accessed on 29 April 2021). [CrossRef]
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric Correction of MODIS Data in the Visible to Middle Infrared: First Results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Vermote, E.F.; Saleous, N. Operational Atmospheric Correction of MODIS Visible to Middle Infrared Land Surface Data in the Case of an Infinite Lambertian Target. In Earth Science Satellite Remote Sensing: Science and Instruments; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1, pp. 123–153. ISBN 978-3-540-37293-6. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In NASA Special Publication; NASA/GSFC: Greenbelt, MD, USA, 1974; Volume 351, p. 309. [Google Scholar]
- Kogan, F.N. Global Drought Watch from Space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. Available online: https://doi.org/10.5067/MODIS/MOD11A2.006 (accessed on 12 May 2021). [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; Wiley: New York, NY, USA, 2013; ISBN 978-1-118-41541-2. [Google Scholar]
- Hargreaves, G.H. Simplified Coefficients for Estimating Monthly Solar Radiation in North America and Europe.; Department of Biological and Irrigation Engineering, Utah State University: Logan, UT, USA, 1994. [Google Scholar]
- Pei, Z.; Fang, S.; Yang, W.; Wang, L.; Wu, M.; Zhang, Q.; Han, W.; Khoi, D.N. The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability 2019, 11, 7243. [Google Scholar] [CrossRef] [Green Version]
- Asadi Zarch, M.A.; Sivakumar, B.; Sharma, A. Droughts in a Warming Climate: A Global Assessment of Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A. Application of Standardized Precipitation Index for Monitoring Meteorological Drought and Wet Conditions in Garhwal Region (Uttarakhand). Arab. J. Geosci. 2021, 14, 800. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, L.; Feng, L.; Zhang, M.; Yao, R. Drought Characteristics and Its Impact on Changes in Surface Vegetation from 1981 to 2015 in the Yangtze River Basin, China. Int. J. Climatol. 2020, 40, 3380–3397. [Google Scholar] [CrossRef]
- Bento, V.A.; Trigo, I.F.; Gouveia, C.M.; DaCamara, C.C. Contribution of Land Surface Temperature (TCI) to Vegetation Health Index: A Comparative Study Using Clear Sky and All-Weather Climate Data Records. Remote Sens. 2018, 10, 1324. [Google Scholar] [CrossRef] [Green Version]
- Bento, V.A.; Gouveia, C.M.; DaCamara, C.C.; Trigo, I.F. A Climatological Assessment of Drought Impact on Vegetation Health Index. Agric. For. Meteorol. 2018, 259, 286–295. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, I.; Faisal, M.; Nazir, H.M.; el Moemen, M.A.; Hussain, T.; Shamsuddin, S. A Novel Multi-Scalar Drought Index for Monitoring Drought: The Standardized Precipitation Temperature Index. Water Resour. Manag. 2017, 31, 4957–4969. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Using Drought Indices to Model the Statistical Relationships between Meteorological and Agricultural Drought in Raya and Its Environs, Northern Ethiopia. Earth Syst. Environ. 2018, 2, 265–279. [Google Scholar] [CrossRef]
- Ye, X.C.; Li, Y.L.; Li, X.H.; Xu, C.Y.; Zhang, Q. Investigation of the Variability and Implications of Meteorological Dry/Wet Conditions in the Poyang Lake Catchment, China, during the Period 1960–2010. Adv. Meteorol. 2015, 1–11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wylie, B.K.; Tieszen, L.L.; Reed, B.C. An Analysis of Relationships among Climate Forcing and Time-Integrated NDVI of Grasslands over the U.S. Northern and Central Great Plains. Remote Sens. Environ. 1998, 65, 25–37. [Google Scholar] [CrossRef]
- Almeida-Ñauñay, A.F.; Benito, R.M.; Quemada, M.; Losada, J.C.; Tarquis, A.M. The Vegetation–Climate System Complexity through Recurrence Analysis. Entropy 2021, 23, 559. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Y.; Cheng, F.; Hou, X.; Zhao, S. Response of Grassland Degradation to Drought at Different Time-Scales in Qinghai Province: Spatio-Temporal Characteristics, Correlation, and Implications. Remote Sens. 2017, 9, 1329. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Feng, F.; Lin, Q.; Bai, H. Advanced Method to Capture the Time-Lag Effects between Annual NDVI and Precipitation Variation Using RNN in the Arid and Semi-Arid Grasslands. Water 2019, 11, 1789. [Google Scholar] [CrossRef] [Green Version]
- Grime, J.P.; Fridley, J.D.; Askew, A.P.; Thompson, K.; Hodgson, J.G.; Bennett, C.R. Long-Term Resistance to Simulated Climate Change in an Infertile Grassland. Proc. Natl. Acad. Sci. USA 2008, 105, 10028–10032. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal Responses of NDVI to Precipitation and Temperature in the Central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Chen, F.; Weber, K.T. Assessing the Impact of Seasonal Precipitation and Temperature on Vegetation in a Grass-Dominated Rangeland. Rangel. J. 2014, 36, 185. [Google Scholar] [CrossRef]
- Fabricante, I.; Oesterheld, M.; Paruelo, J.M. Annual and Seasonal Variation of NDVI Explained by Current and Previous Precipitation across Northern Patagonia. J. Arid Environ. 2009, 73, 745–753. [Google Scholar] [CrossRef]
- Wang, X.; Ge, L.; Li, X. Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia. Remote Sens. 2013, 5, 3611–3636. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Iglesias, A. Climate Changes in the Mediterranean Region: Physical Aspects and Effects on Agriculture. In Mediterranean Climate; Bolle, H.-J., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 107–111. ISBN 978-3-642-62862-7. [Google Scholar]
- Harper, C.W.; Blair, J.M.; Fay, P.A.; Knapp, A.K.; Carlisle, J.D. Increased Rainfall Variability and Reduced Rainfall amount Decreases Soil CO2 Flux in a Grassland Ecosystem. Glob. Chang. Biol. 2005, 11, 322–334. [Google Scholar] [CrossRef]
- Bonan, G. Ecological Climatology; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781107339200. [Google Scholar]
- Bugalho, M.N.; Abreu, J.M.F. The multifunctional role of grasslands. In Sustainable Mediterranean Grasslands and their Multi-Functions; Options Méditerranéennes: Série A. Séminaires Méditerranéens; Porqueddu, C., Tavares de Sousa, M.M., Eds.; CIHEAM: Zaragoza, Spain; FAO: Zaragoza, Spain; ENMP: Zaragoza, Spain; SPPF: Zaragoza, Spain, 2008; Volume 79, pp. 25–30. [Google Scholar]
- Laio, F.; Porporato, A.; Fernandez-Illescas, C.; Rodriguez-Iturbe, I. Plants in Water-Controlled Ecosystems: Active Role in Hydrologic Processes and Response to Water Stress. Adv. Water Resour. 2001, 24, 745–762. [Google Scholar] [CrossRef]
- Scanlon, T.M.; Caylor, K.K.; Manfreda, S.; Levin, S.A.; Rodriguez-Iturbe, I. Dynamic Response of Grass Cover to Rainfall Variability: Implications for the Function and Persistence of Savanna Ecosystems. Adv. Water Resour. 2005, 28, 291–302. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A Hydrologic Perspective of Climate-Soil-Vegetation Dynamies. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M. Predicting Crop Residue Decomposition Using Moisture Adjusted Time Scales. Nutr. Cycl. Agroecosyst. 2005, 70, 283–291. [Google Scholar] [CrossRef]
- Marini, G.; Fontana, N.; Mishra, A.K. Investigating Drought in Apulia Region, Italy Using SPI and RDI. Theor. Appl. Climatol. 2019, 137, 383–397. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P.; Desai, V.R. Drought Characterization: A Probabilistic Approach. Stoch. Environ. Res. Risk Assess. 2009, 23, 41–55. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Cao, S.; Liu, X.; Liu, J.; Cheng, D. Responses of Vegetation Productivity to Multi-Scale Drought in Loess Plateau, China. Catena 2018, 163, 165–171. [Google Scholar] [CrossRef]
ZGU | ZSO | ||||
---|---|---|---|---|---|
A | Thickness (cm) | 5 | Au | Thickness (cm) | 3 |
Colour | 10YR3/4 | Colour | 10YR3/2 | ||
Silt (%) | 29 | Silt (%) | 19 | ||
Coarse Sand (%) | 12 | Coarse Sand (%) | 37 | ||
Fine Sand (%) | 25 | Fine Sand (%) | 38 | ||
Clay (%) | 34 | Clay (%) | 6 | ||
Bulk Density (g/cm3) | 1.2 | Bulk Density (g/cm3) | 1.5 | ||
Water Holding Capacity (%) | 13.3 | Water Holding Capacity (%) | 11.7 | ||
AB | Thickness (cm) | 20 | Au2 | Thickness (cm) | 12 |
Colour | 10YR3/4 | Colour | 10YR4/4 | ||
Silt (%) | 22 | Silt (%) | 18 | ||
Coarse Sand (%) | 24 | Coarse Sand (%) | 30 | ||
Fine Sand (%) | 13 | Fine Sand (%) | 47 | ||
Clay (%) | 41 | Clay (%) | 5 | ||
Bulk Density (g/cm3) | 1.2 | Bulk Density (g/cm3) | 1.7 | ||
Water Holding Capacity (%) | 12.6 | Water Holding Capacity (%) | 11.1 | ||
Zone attributes | Slope (%) | 11.7 | Zone attributes | Slope (%) | 4.7 |
Height (m) | 820 | Height (m) | 958 | ||
Precipitation (mm) | 576 | Precipitation (mm) | 550 | ||
Temperature (°C) | 12.6 | Temperature (°C) | 13.6 |
Index | Equation | Reference |
---|---|---|
Normalized difference vegetation index (NDVI) 1 | [47] | |
Vegetation condition index (VCI) | [48] | |
Temperature condition index (TCI) 2 | [48] | |
Vegetation health index (VHI) 3 | [48] |
SPI, SPEI and SVHI | VHI | |
---|---|---|
Extremely drought | IV < −2 | IV < 10 |
Severe drought | −2 < IV < −1.5 | 10 < IV < 20 |
Moderate drought | −1.5 < IV < −1 | 20 < IV < 35 |
No drought | IV > −1 | IV > 35 |
Zone | Scale | VHI-SPI | VHI-SPEI | SVHI-SPI | SVHI-SPEI |
---|---|---|---|---|---|
ZGU | M | 0.14 | 0.13 | 0.40 | 0.42 |
Q | 0.30 | 0.30 | 0.64 | 0.65 | |
ZSO | M | 0.13 | 0.14 | 0.41 | 0.43 |
Q | 0.28 | 0.30 | 0.69 | 0.71 |
SVHI-SPI | |||||||||||||
January | February | March | April | May | June | July | August | September | October | November | December | ||
ZGU | M | 0.19 | 0.33 | 0.63 | 0.14 | 0.63 | 0.34 | 0.37 | 0.50 | 0.59 | 0.07 | 0.28 | 0.66 |
Q | 0.51 | 0.69 | 0.66 | 0.72 | |||||||||
ZSO | M | 0.18 | 0.35 | 0.72 | 0.30 | 0.69 | 0.47 | 0.05 | 0.54 | 0.64 | 0.32 | 0.36 | 0.27 |
Q | 0.72 | 0.80 | 0.56 | 0.69 | |||||||||
SVHI-SPEI | |||||||||||||
January | February | March | April | May | June | July | August | September | October | November | December | ||
ZGU | M | 0.21 | 0.21 | 0.64 | 0.17 | 0.69 | 0.43 | 0.47 | 0.45 | 0.67 | 0.12 | 0.29 | 0.66 |
Q | 0.48 | 0.70 | 0.69 | 0.73 | |||||||||
ZSO | M | 0.18 | 0.26 | 0.73 | 0.32 | 0.78 | 0.57 | 0.24 | 0.50 | 0.66 | 0.30 | 0.40 | 0.28 |
Q | 0.68 | 0.83 | 0.61 | 0.74 |
Zone | Scale | Class Drought | SPI | SPEI | VHI | SVHI |
---|---|---|---|---|---|---|
ZGU | M | No drought | 202 | 201 | 171 | 205 |
Moderate drought | 17 | 30 | 48 | 19 | ||
Severe drought | 12 | 9 | 20 | 9 | ||
Extremely drought | 9 | 0 | 1 | 7 | ||
TOTAL | 240 | 240 | 240 | 240 | ||
Q | No drought | 71 | 68 | 57 | 68 | |
Moderate drought | 6 | 9 | 21 | 7 | ||
Severe drought | 2 | 2 | 2 | 2 | ||
Extremely drought | 1 | 1 | 0 | 3 | ||
TOTAL | 80 | 80 | 80 | 80 | ||
ZSO | M | No drought | 203 | 193 | 162 | 205 |
Moderate drought | 17 | 36 | 36 | 22 | ||
Severe drought | 13 | 11 | 31 | 7 | ||
Extremely drought | 7 | 0 | 11 | 6 | ||
TOTAL | 240 | 240 | 240 | 240 | ||
Q | No drought | 73 | 65 | 49 | 66 | |
Moderate drought | 4 | 12 | 15 | 10 | ||
Severe drought | 2 | 2 | 16 | 1 | ||
Extremely drought | 1 | 1 | 0 | 3 | ||
TOTAL | 80 | 80 | 80 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida-Ñauñay, A.F.; Villeta, M.; Quemada, M.; Tarquis, A.M. Assessment of Drought Indexes on Different Time Scales: A Case in Semiarid Mediterranean Grasslands. Remote Sens. 2022, 14, 565. https://doi.org/10.3390/rs14030565
Almeida-Ñauñay AF, Villeta M, Quemada M, Tarquis AM. Assessment of Drought Indexes on Different Time Scales: A Case in Semiarid Mediterranean Grasslands. Remote Sensing. 2022; 14(3):565. https://doi.org/10.3390/rs14030565
Chicago/Turabian StyleAlmeida-Ñauñay, Andres F., María Villeta, Miguel Quemada, and Ana M. Tarquis. 2022. "Assessment of Drought Indexes on Different Time Scales: A Case in Semiarid Mediterranean Grasslands" Remote Sensing 14, no. 3: 565. https://doi.org/10.3390/rs14030565
APA StyleAlmeida-Ñauñay, A. F., Villeta, M., Quemada, M., & Tarquis, A. M. (2022). Assessment of Drought Indexes on Different Time Scales: A Case in Semiarid Mediterranean Grasslands. Remote Sensing, 14(3), 565. https://doi.org/10.3390/rs14030565