Coupling Complementary Strategy to U-Net Based Convolution Neural Network for Detecting Lunar Impact Craters
Abstract
:1. Introduction
2. Methodology
2.1. Data Preparation
2.2. Dual-Path Network Structure
2.2.1. Contracting Path
2.2.2. Bridging Layer and Expanding Path
2.2.3. Extraction of Impact Craters
2.3. Evaluation Metrics
3. Experiments and Results
3.1. Advantage of the Feature Complementary of the DEM and WAC Images
3.2. Ablation Experiment on Global Context Module
3.3. Comparisons with Other Competitive Methods
3.4. Robustness Testing on the Whole Moon
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASA Catalogue of Lunar Nomenclature. Available online: https://ntrs.nasa.gov/citations/19830003761 (accessed on 10 May 2021).
- Losiak, A.; Wilhelms, D.E.; Byrne, C.J.; Thaisen, K.G.; Weider, S.Z.; Kohout, T.; Kring, D.A. A new lunar impact crater database. In Proceedings of the Lunar and Planetary Science Conference, Woodlands, TX, USA, 23–27 March 2009; p. 1532. [Google Scholar]
- Urbach, E.R.; Stepinski, T.F. Automatic detection of sub-km craters in high resolution planetary images. Planet. Space Sci. 2009, 57, 880–887. [Google Scholar] [CrossRef]
- Vijayan, S.; Vani, K.; Sanjeevi, S. Crater detection, classification and contextual information extraction in lunar images using a novel algorithm. Icarus 2013, 226, 798–815. [Google Scholar] [CrossRef]
- Di, K.; Li, W.; Yue, Z.; Sun, Y.; Liu, Y. A machine learning approach to crater detection from topographic data. Adv. Space Res. 2014, 54, 2419–2429. [Google Scholar] [CrossRef]
- Mu, Y.; Ding, W.; Tao, D.; Stepinski, T.F. Biologically inspired model for crater detection. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2487–2494. [Google Scholar]
- Sawabe, Y.; Matsunaga, T.; Rokugawa, S. Automated detection and classification of lunar craters using multiple approaches. Adv. Space Res. 2006, 37, 21–27. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, G.; Yan, S.; Lin, H. Crater Detection Using the Morphological Characteristics of Chang’E-1 Digital Elevation Models. IEEE Geosci. Remote Sens. Lett. 2013, 10, 885–889. [Google Scholar] [CrossRef]
- Chen, M.; Liu, D.; Qian, K.; Li, J.; Lei, M.; Zhou, Y. Lunar Crater Detection Based on Terrain Analysis and Mathematical Morphology Methods Using Digital Elevation Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3681–3692. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Pina, P.; Machado, M.; Bandeira, L.; da Silva, E.A. Crater detection in multi-ring basins of mercury. Lect. Notes Comput. Sci. 2015, 9117, 522–529. [Google Scholar]
- Wang, Y.; Wu, B. Active Machine Learning Approach for Crater Detection from Planetary Imagery and Digital Elevation Models. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5777–5789. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, X.; Hu, T.; Yang, J. Coarse-to-Fine Extraction of Small-Scale Lunar Impact Craters from the CCD Images of the Chang’E Lunar Orbiters. IEEE Trans. Geosci. Remote Sens. 2019, 57, 181–193. [Google Scholar] [CrossRef]
- Stepinski, T.F.; Ding, W.; Vilalta, R. Detecting Impact Craters in Planetary Images Using Machine Learning. In Intelligent Data Analysis for Real-Life Applications; IGI Global: Hershey, PA, USA, 2012; pp. 146–159. [Google Scholar]
- Jin, Y.; He, F.; Liu, S.; Tong, X. Small Scale Crater Detection based on Deep Learning with Multi-Temporal Samples of High-Resolution Images. In Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Shanghai, China, 5–7 August 2019; pp. 1–4. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Ali-Dib, M.; Menou, K.; Jackson, A.P.; Zhu, C.; Hammond, N. Automated crater shape retrieval using weakly-supervised deep learning. Icarus 2020, 345, 113749. [Google Scholar] [CrossRef] [Green Version]
- Silburt, A.; Ali-Dib, M.; Zhu, C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar crater identification via deep learning. Icarus 2019, 317, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Cambridge, UK, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Wang, S.; Fan, Z.; Li, Z.; Zhang, H.; Wei, C. An Effective Lunar Crater Recognition Algorithm Based on Convolutional Neural Network. Remote Sens. 2020, 12, 2694. [Google Scholar] [CrossRef]
- DeLatte, D.; Crites, S.; Guttenberg, N.; Yairi, T. Automated crater detection algorithms from a machine learning perspective in the convolutional neural network era. Adv. Space Res. 2019, 64, 1615–1628. [Google Scholar] [CrossRef]
- LRO LOLA and Kaguya Terrain Camera DEM Merge 60N60S 512ppd (59m). Available online: https://astrogeology.usgs.gov/search/map/Moon/LRO/LOLA/Lunar_LRO_LOLAKaguya_DEMmerge_60N60S_512ppd (accessed on 10 May 2021).
- Lunar Reconnaissance Orbiter Camera Global Morphological Map of the Moon. Available online: http://wms.lroc.asu.edu/lroc/view_rdr/WAC_GLOBAL (accessed on 10 May 2021).
- Keys, R.G. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Povilaitis, R.; Robinson, M.; van der Bogert, C.; Hiesinger, H.; Meyer, H.; Ostrach, L. Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon. Planet. Space Sci. 2018, 162, 41–51. [Google Scholar] [CrossRef]
- Head, J.W.; Fassett, C.I.; Kadish, S.J.; Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Mazarico, E. Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations. Science 2010, 329, 1504–1507. [Google Scholar] [CrossRef]
- Cartopy: A Cartographic Python Library with a Matplotlib Inter-Face. Available online: http://scitools.org.uk/cartopy/index.html (accessed on 10 May 2021).
- Iglovikov, V.; Shvets, A. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. ArXiv 2018, arXiv:1801.05746. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 1st ed.; Springer: Granada, Spain, 2018; pp. 3–11. [Google Scholar]
- Ding, P.L.K.; Li, Z.; Zhou, Y.; Li, B. Deep residual dense U-Net for resolution enhancement in accelerated MRI acquisition. In Proceedings of the Medical Imaging 2019: Image Processing, San Diego, CA, USA, 16–21 February 2019; SPIE: San Diego, CA, USA, 2019; Volume 10949, p. 109490F. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 11 July 2015; pp. 448–456. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 770–778. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-Local Networks Meet Squeeze-Excitation Networks and Beyond. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019; pp. 1971–1980. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Boulogne, F.; Warner, J.D.; Neil, Y.E. Scikit-image: Image processing in Python. PeerJ 2014, 2, 453. [Google Scholar]
- Delatte, D.M.; Crites, S.T.; Guttenberg, N.; Tasker, E.J.; Yairi, T. Segmentation Convolutional Neural Networks for Automatic Crater Detection on Mars. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2944–2957. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet With Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 182–186. [Google Scholar] [CrossRef]
- Peng, B.; Li, Y.; Fan, K.; Yuan, L.; Tong, L.; He, L. New Network Based on D-Linknet and Densenet for High Resolution Satellite Imagery Road Extraction. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 3939–3942. [Google Scholar]
- Zhu, Q.; Zheng, Y.; Jiang, Y.; Yang, J. Efficient Multi-Class Semantic Segmentation of High Resolution Aerial Imagery with Dilated LinkNet. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1065–1068. [Google Scholar]
- Yuan, S.; Yang, K.; Li, X.; Cai, H. Automatic Seamline Determination for Urban Image Mosaicking Based on Road Probability Map from the D-LinkNet Neural Network. Sensors 2020, 20, 1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alom, Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tang, P.; Zhao, L.; Huang, Q. A Comparative Study of U-Nets with Various Convolution Components for Building Extraction. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Ghosh, S.; Chaki, A.; Santosh, K. Improved U-Net architecture with VGG-16 for brain tumor segmentation. Phys. Eng. Sci. Med. 2021, 44, 703–712. [Google Scholar] [CrossRef]
Regions | Longitude | Latitude | Head | Povilaitis | Number of Craters |
---|---|---|---|---|---|
A | (−180, −90) | (0, 60) | 777 | 4403 | 5180 |
B | (−90, 0) | (0, 60) | 210 | 904 | 1114 |
C | (0, 90) | (0, 60) | 306 | 1234 | 1540 |
D | (90, 180) | (0, 60) | 669 | 3544 | 4213 |
E | (−180, −90) | (−60, 0) | 516 | 2579 | 3095 |
F | (−90, 0) | (−60, 0) | 422 | 1559 | 1981 |
G | (0, 90) | (−60, 0) | 666 | 2468 | 3134 |
H | (90, 180) | (−60, 0) | 735 | 2644 | 3379 |
sum | (−180, 180) | (−60, 60) | 4301 | 19,335 | 23,636 |
Layer Name | Feature Maps (Input) | Feature Maps (Output) |
---|---|---|
Special Conv 1 | 256 × 256 × 1 | 256 × 256 × 32 |
Max Pooling 1 | 256 × 256 × 32 | 128 × 128 × 32 |
Special Conv 2 | 128 × 128 × 32 | 128 × 128 × 64 |
Max Pooling 2 | 128 × 128 × 64 | 64 × 64 × 64 |
Special Conv 3 | 64 × 64 × 64 | 64 × 64 × 128 |
Max Pooling 3 | 64 × 64 × 128 | 32 × 32 × 128 |
Special Conv 4 | 32 × 32 × 128 | 32 × 32 × 256 |
Max Pooling 4 | 32 × 32 × 256 | 16 × 16 × 256 |
Special Conv 5 | 16 × 16 × 256 | 16 × 16 × 512 |
Bridging with GC | 16 × 16 × 512 | 16 × 16 × 512 |
Transpose Conv 5 | 16 ×16 × 256 | 32 × 32 × 256 |
Special Conv 6 | 32 × 32 × 256 | 32 × 32 × 128 |
Transpose Conv 6 | 32 × 32 × 128 | 64 × 64 × 128 |
Special Conv 7 | 64 × 64 × 128 | 64 × 64 × 64 |
Transpose Conv 7 | 64 × 64 × 64 | 128 × 128 × 64 |
Special Conv 8 | 128 × 128 × 64 | 128 × 128 × 32 |
Transpose Conv 8 | 128 × 128 × 32 | 256 × 256 × 32 |
Conv and Sigmoid | 256 × 256 × 32 | 256 × 256 × 1 |
Data Type a | Epoch Number b | Recall | Precision | F1-Score | F2-Score |
---|---|---|---|---|---|
DEM | 30 | 74.3% | 85.3% | 78.1% | 76.3% |
WAC | 6 | 68.9% | 83.3% | 73.5% | 71.4% |
DEM + WAC | 24 | 85.0% | 81.4% | 82.1% | 83.5% |
GC Module a | Parameter | FPS | Epoch Number b | Recall | Precision | F1-Score | F2-Score |
---|---|---|---|---|---|---|---|
✓ | 12,418,562 | 36.099 | 22 | 85.0% | 81.4% | 82.1% | 83.5% |
× | 12,351,617 | 35.857 | 21 | 82.0% | 81.4% | 80.4% | 81.1% |
Metric | Deep Moon | ERU-Net | U-Net | LinkNet | Dual-Path |
---|---|---|---|---|---|
Parameters | 10,278,017 | 23,740,305 | 40,989,313 | 38,105,425 | 12,418,562 |
FPS | 34.9 | 14.1 | 7.7 | 8.4 | 36.1 |
Recall | 43.3% | 75.5% | 63.7% | 75.1% | 85.0% |
Precision | 90.8% | 86.8% | 82.7% | 87.8% | 81.4% |
F1-score | 55.8% | 79.5% | 70.1% | 79.6% | 82.0% |
F2-score | 47.3% | 76.8% | 65.8% | 76.6% | 83.5% |
8.2% | 7.3% | 7.7% | 7.3% | 4.1% | |
6.7% | 6.9% | 6.8% | 6.8% | 3.4% |
Regions | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
Craters in dataset | 6215 | 5325 | 6798 | 6707 | 9564 | 1077 | 3262 | 5820 |
Restored craters | 5103 | 4390 | 5501 | 5402 | 7011 | 917 | 2854 | 4857 |
Detected craters | 6276 | 5172 | 6633 | 6456 | 8416 | 1136 | 3450 | 5957 |
New craters | 1173 | 782 | 1132 | 1054 | 1405 | 219 | 596 | 1100 |
Omitted craters | 1112 | 935 | 1297 | 1305 | 2553 | 160 | 408 | 963 |
Precision | 81.3% | 84.9% | 82.9% | 83.7% | 83.3% | 80.7% | 82.7% | 81.5% |
Recall | 82.1% | 82.4% | 80.9% | 80.5% | 73.3% | 85.1% | 87.5% | 83.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Yuan, R.; Li, W.; Liu, Y. Coupling Complementary Strategy to U-Net Based Convolution Neural Network for Detecting Lunar Impact Craters. Remote Sens. 2022, 14, 661. https://doi.org/10.3390/rs14030661
Mao Y, Yuan R, Li W, Liu Y. Coupling Complementary Strategy to U-Net Based Convolution Neural Network for Detecting Lunar Impact Craters. Remote Sensing. 2022; 14(3):661. https://doi.org/10.3390/rs14030661
Chicago/Turabian StyleMao, Yuqing, Rongao Yuan, Wei Li, and Yijing Liu. 2022. "Coupling Complementary Strategy to U-Net Based Convolution Neural Network for Detecting Lunar Impact Craters" Remote Sensing 14, no. 3: 661. https://doi.org/10.3390/rs14030661
APA StyleMao, Y., Yuan, R., Li, W., & Liu, Y. (2022). Coupling Complementary Strategy to U-Net Based Convolution Neural Network for Detecting Lunar Impact Craters. Remote Sensing, 14(3), 661. https://doi.org/10.3390/rs14030661