The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication
Abstract
:1. Introduction and Contextualization
2. Materials and Methods
2.1. The Brazilian Soil Spectral Service (BraSpecS) Construction
2.2. Internal Soil Dataset of BraSpecS
2.3. Data Modeling Provided by BraSpecS
2.4. Data Modeling Provided by BraSpecS
3. Results
3.1. Online Interaction Experience
3.2. The Quantification
3.3. Prediction Models Based on Different Populations
4. Discussion
4.1. The Web Service Advantages and Limitations
4.2. Brazilian Users of the BraSpecS
4.3. International Users of the BraSpecS Based on the Internal BraSpecS
4.4. International Users of the BraSpecS Based on Local Datasets
5. Conclusions and Final Considerations
6. Future Works
- (1)
- The Brazilian Soil spectral Service (BraSpecS): besbbr.com.br or http://143.107.213.227/layout/_en/apresenta_temp.php. (Accessed on 2 February 2022)
- (2)
- The Brazilian Soil Spectral Library (BSSL): https://bibliotecaespectral.wixsite.com/english or http://143.107.213.227/layout/. (Accessed on 2 February 2022)
- (3)
- The Group that developed, Geotehnologies on Soil Science Group (GeoCis): https://esalqgeocis.wixsite.com/english. (Accessed on 2 February 2022)
- (4)
- Corresponding author profile: https://jamdemat.wixsite.com/dematte (Accessed on 2 February 2022)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An international union of soil sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; McBratney, A.B. Soil chemical analytical accuracy and costs: Implications from precision agriculture. Aust. J. Exp. Agric. 1998, 38, 765. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Dotto, A.C.; Bedin, L.G.; Sayão, V.M.; Souza, A.B. E Soil analytical quality control by traditional and spectroscopy techniques: Constructing the future of a hybrid laboratory for low environmental impact. Geoderma 2019, 337, 111–121. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by vis—NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; MacDonald, L.M.; McLaughlin, M.J. The performance of visible, near and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 139–159. [Google Scholar]
- Stoner, E.R.; Baumgardner, M.F. Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 1981, 45, 1161–1165. [Google Scholar] [CrossRef]
- Brown, D.J.; Shepherd, K.D.; Walsh, M.G.; Dewayne Mays, M.; Reinsch, T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 2006, 132, 273–290. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil spectral library and its use in soil classification. Rev. Bras. Ciência Solo 2010, 34, 861–870. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Dotto, A.C.; Paiva, A.F.; Sato, M.V.; Dalmolin, R.S.; Maria do Socorro, B.; da Silva, E.B.; Nanni, M.R.; ten Caten, A.; Noronha, N.C.; et al. The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma 2019, 354, 113793. [Google Scholar] [CrossRef]
- Brodský, L.; Klement, A.; Penížek, V.; Kodešová, R.; Borůvka, L. Building soil spectral library of the Czech soils for quantitative digital soil mapping. Soil Water Res. 2011, 6, 165–172. [Google Scholar] [CrossRef]
- Gogé, F.; Joffre, R.; Jolivet, C.; Ross, I.; Ranjard, L. Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database. Chemom. Intell. Lab. Syst. 2012, 110, 168–176. [Google Scholar] [CrossRef]
- Knadel, M.; Deng, F.; Thomsen, A.; Greve, M. Development of a Danish national Vis-NIR soil spectral library for soil organic carbon determination. In Digital Soil Assessments and Beyond; CRC Press: Boca Raton, FL, USA, 2012; pp. 403–408. [Google Scholar]
- Cambule, A.H.; Rossiter, D.G.; Stoorvogel, J.J.; Smaling, E.M.A. Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique. Geoderma 2012, 183, 41–48. [Google Scholar] [CrossRef]
- Bas, M.V.; Meléndez-Pastor, I.; Navarro-Pedreño, J.; Gómez, I.; Mataix-Solera, J.; Hernández, E. Saline soils spectral library as a tool for digital soil mapping. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Viscarra Rossel, R.A. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra. J. Geophys. Res. 2011, 116, F04023. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.; Peng, J.; Ji, W.; Liu, H.; Li, X.; Viscarra Rossel, R.A. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China Earth Sci. 2014, 57, 1671–1680. [Google Scholar] [CrossRef]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Viscarra Rossel, R.A.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Liu, S.; Shen, H.; Chen, S.; Zhao, X.; Biswas, A.; Jia, X.; Shi, Z.; Fang, J. Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment. Geoderma 2019, 348, 37–44. [Google Scholar] [CrossRef]
- Condit, H.R. The spectral reflectance of American soils. Photogramm. Eng. 1970, 36, 955–966. [Google Scholar]
- Wijewardane, N.K.; Ge, Y.; Wills, S.; Loecke, T. Prediction of soil carbon in the conterminous United States: Visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment Project. Soil Sci. Soc. Am. J. 2016, 80, 973–982. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Wills, S.; Libohova, Z. Predicting physical and chemical properties of US Soils with a mid-infrared reflectance spectral library. Soil Sci. Soc. Am. J. 2018, 82, 722–731. [Google Scholar] [CrossRef]
- Baldock, J.A.; McNally, S.R.; Beare, M.H.; Curtin, D.; Hawke, B. Predicting soil carbon saturation deficit and related properties of New Zealand soils using infrared spectroscopy. Soil Res. 2019, 57, 835. [Google Scholar] [CrossRef]
- Hergarten, C.; Nazarmavloev, F.; Wolfgramm, B. Building a soil spectral library for Tajikistan comparing local and global modeling approaches. In Proceedings of the 3rd Global Workshop on Proximal Soil Sensing, Potsdam, Germany, 26–29 May 2013; pp. 265–269. [Google Scholar]
- Tuğrul, K.M. Soil management in sustainable agriculture. In Soil Management and Plant Nutrition for Sustainable Crop Production; Hasanuzzaman, M., Teixeira Filho, M.C.M., Nogueira, T.A., Eds.; IntechOpen: London, UK, 2019; pp. 111–126. [Google Scholar]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Dangal, S.; Sanderman, J.; Wills, S.; Ramirez-Lopez, L. Accurate and precise prediction of soil properties from a large mid-infrared spectral library. Soil Syst. 2019, 3, 11. [Google Scholar] [CrossRef]
- Baumann, P.; Helfenstein, A.; Gubler, A.; Keller, A.; Meuli, R.G.; Wächter, D.; Lee, J.; Viscarra Rossel, R.; Six, J. Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring. SOIL 2021, 7, 525–546. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Jeon, S.H.; McBratney, A. Mid-infrared spectroscopy for accurate measurement of an extensive set of soil properties for assessing soil functions. Soil Secur. 2022, 6, 100043. [Google Scholar] [CrossRef]
- World Agroforestry (ICRAF). International Soil Reference and Information Centre (ISRIC) ICRAF-ISRIC Soil VNIR Spectral Library. Available online: https://data.worldagroforestry.org/dataset.xhtml?persistentId=doi:10.34725/DVN/MFHA9C (accessed on 11 November 2021).
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef]
- Vågen, T.-G.; Winowiecki, L.; Tondoh, J.E.; Desta, L.T.; Gumbricht, T. Mid-Infrared Spectra (MIRS) from ICRAF Soil and Plant Spectroscopy Laboratory: Africa Soil Information Service (AfSIS) Phase I 2009–2013. Available online: https://data.worldagroforestry.org/dataset.xhtml?persistentId=doi:10.34725/DVN/QXCWP1 (accessed on 25 January 2022).
- Tziolas, N.; Tsakiridis, N.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. A memory-based learning approach utilizing combined spectral sources and geographical proximity for improved VIS-NIR-SWIR soil properties estimation. Geoderma 2019, 340, 11–24. [Google Scholar] [CrossRef]
- Woodwell Climate Research Center (OSSL). Open Soil Spectroscopy Library. Available online: https://www.woodwellclimate.org/open-soil-spectral-library/ (accessed on 10 December 2021).
- United States Department of Agriculture (USDA). Rapid Carbon Assessment (RaCA) Project. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054164 (accessed on 22 September 2021).
- Ben Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245, 112–124. [Google Scholar] [CrossRef]
- Bunting, P. Pre-processing of remotely sensed imagery. In The Roles of Remote Sensing in Nature Conservation; Diaz-Delgado, R., Lucas, R., Hurford, C., Eds.; Springer: Manhattan, NY, USA, 2017; pp. 39–63. [Google Scholar]
- Dotto, A.C.; Dalmolin, R.S.D.; Caten, A.T.; Gris, D.J.; Ruiz, L.F.C. AlradSpectra: A quantification tool for soil properties using spectroscopic data in R. Rev. Bras. Ciência Solo 2019, 43, e0180263. [Google Scholar] [CrossRef]
- Sang, K.; Piovan, S.; Fontana, G.L. A WebGIS for Visualizing historical activities based on photos: The project of Yunnan–Vietnam railway web map. Sustainability 2021, 13, 419. [Google Scholar] [CrossRef]
- R Development Core Team. The R Project for Statistical Computing. Available online: https://www.r-project.org (accessed on 6 June 2021).
- Apache Software Foundation Community-Led Development “The Apache Way”. Available online: https://www.apache.org/ (accessed on 23 July 2020).
- Abeysinghe, S. PHP Team Development; Packt Publishing: Birmingham, UK, 2009. [Google Scholar]
- Tasneem, S.; Ammar, R. Performance study of a distributed web server: An analytical approach. J. Softw. Eng. Appl. 2012, 05, 855–863. [Google Scholar] [CrossRef]
- Mitchell, L.J. PHP Web Services: APIs for the Modern Web; O’Reilly Media: Newton, MA, USA, 2016. [Google Scholar]
- Horner, J. RApache: Web Application Development with R and Apache. Available online: http://www.rapache.net/ (accessed on 25 June 2021).
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided by machine learning tools. SOIL 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Manohar, H.M.; Appaiah, S. Stabilization of FIFO system and inventory management. Iternational Res. J. Eng. Technol. 2017, 4, 5631–5638. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais; IAC: Campinas, Brazil, 2001; ISBN 9788585564056. [Google Scholar]
- Teixeira, P.C.; Donagema, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; EMBRAPA: Brasília, Brazil, 2017. [Google Scholar]
- Zhang, X.; Huang, B.; Ji, J.F.; Hu, W.Y.; Sun, W.X.; Zhao, Y.C. Quantitative prediction of soil salinity content with visible-near infrared hyper-spectra in Northeast China. Spectrosc. Spectr. Anal. 2012, 32, 2075–2079. [Google Scholar]
- Zhang, X.; Huang, B. Prediction of soil salinity with soil-reflected spectra: A comparison of two regression methods. Sci. Rep. 2019, 9, 5067. [Google Scholar] [CrossRef]
- Quinlan, J. Learning with continuous classes. In Proceedings of the AI’92, 5th Australian Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992; Adams, A., Sterling, L., Eds.; World Scientific: Singapore, 1992; pp. 343–348. [Google Scholar]
- Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Xiong, X.; Grunwald, S.; Myers, D.B.; Kim, J.; Harris, W.G.; Comerford, N.B. Holistic environmental soil-landscape modeling of soil organic carbon. Environ. Model. Softw. 2014, 57, 202–215. [Google Scholar] [CrossRef]
- Moura-Bueno, J.M.; Dalmolin, R.S.D.; Horst-Heinen, T.Z.; Grunwald, S.; ten Caten, A. Environmental covariates improve the spectral predictions of organic carbon in subtropical soils in southern Brazil. Geoderma 2021, 393, 114981. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Balafoutis, A.; Zalidis, G.; Bochtis, D. From laboratory to proximal sensing spectroscopy for soil organic carbon estimation—A Review. Sustainability 2020, 12, 443. [Google Scholar] [CrossRef]
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-90. 2010. Available online: https://CRAN.R-project.org/package=caret (accessed on 20 March 2020).
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Wang, R.; Wang, H. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using Vis—NIR spectroscopy. Geoderma 2020, 380, 114616. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Sequeira, C.H.; Wills, S.A.; Grunwald, S.; Ferguson, R.R.; Benham, E.C.; West, L.T. Development and update process of VNIR-based models built to predict soil organic carbon. Soil Sci. Soc. Am. J. 2014, 78, 903–913. [Google Scholar] [CrossRef]
- Summerauer, L.; Baumann, P.; Ramirez-Lopez, L.; Barthel, M.; Bauters, M.; Bukombe, B.; Reichenbach, M.; Boeckx, P.; Kearsley, E.; Van Oost, K.; et al. The central African soil spectral library: A new soil infrared repository and a geographical prediction analysis. SOIL 2021, 7, 693–715. [Google Scholar] [CrossRef]
- Moura-Bueno, J.M.; Dalmolin, R.S.D.; Horst-Heinen, T.Z.; ten Caten, A.; Vasques, G.M.; Dotto, A.C.; Grunwald, S. When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content? Sci. Total Environ. 2020, 737, 139895. [Google Scholar] [CrossRef]
- Terra, F.S.; Demattê, J.A.M.; Viscarra Rossel, R.A. Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data. Geoderma 2015, 255–256, 81–93. [Google Scholar] [CrossRef]
- Clairotte, M.; Grinand, C.; Kouakoua, E.; Thébault, A.; Saby, N.P.A.; Bernoux, M.; Barthès, B.G. National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma 2016, 276, 41–52. [Google Scholar] [CrossRef]
- Dotto, A.C.; Dalmolin, R.S.D.; ten Caten, A.; Grunwald, S. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra. Geoderma 2018, 314, 262–274. [Google Scholar] [CrossRef]
- Ramirez-Lopez, L.; Wadoux, A.M.J.-C.; Franceschini, M.H.D.; Terra, F.S.; Marques, K.P.P.; Sayão, V.M.; Demattê, J.A.M. Robust soil mapping at the farm scale with vis–NIR spectroscopy. Eur. J. Soil Sci. 2019, 70, 378–393. [Google Scholar] [CrossRef]
- Rizzo, R.; Medeiros, L.G.; Mello, D.C.; de Marques, K.P.P.; de Souza Mendes, W.; Quiñonez Silvero, N.E.; Dotto, A.C.; Bonfatti, B.R.; Demattê, J.A.M. Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil. Geoderma 2020, 361, 114018. [Google Scholar] [CrossRef]
- Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma 2007, 140, 444–453. [Google Scholar] [CrossRef]
- Grunwald, S.; Yu, C.; Xiong, X. Transferability and scalability of soil total carbon prediction models in Florida, USA. Pedosphere 2018, 28, 856–872. [Google Scholar] [CrossRef]
- Sankey, J.B.; Brown, D.J.; Bernard, M.L.; Lawrence, R.L. Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C. Geoderma 2008, 148, 149–158. [Google Scholar] [CrossRef]
- Wetterlind, J.; Stenberg, B. Near-infrared spectroscopy for within-field soil characterization: Small local calibrations compared with national libraries spiked with local samples. Eur. J. Soil Sci. 2010, 61, 823–843. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Jones, E.; McBratney, A. To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library. Geoderma 2022, 406, 115501. [Google Scholar] [CrossRef]
- McDowell, M.L.; Bruland, G.L.; Deenik, J.L.; Grunwald, S.; Knox, N.M. Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma 2012, 189, 312–320. [Google Scholar] [CrossRef]
- Araújo, S.R.; Wetterlind, J.; Demattê, J.A.M.; Stenberg, B. Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur. J. Soil Sci. 2014, 65, 718–729. [Google Scholar] [CrossRef]
- Debaene, G.; Niedźwiecki, J.; Pecio, A.; Żurek, A. Effect of the number of calibration samples on the prediction of several soil properties at the farm-scale. Geoderma 2014, 214–215, 114–125. [Google Scholar] [CrossRef]
- Grunwald, S.; Thompson, J.A.; Boettinger, J.L. Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Sci. Soc. Am. J. 2011, 75, 1201–1213. [Google Scholar] [CrossRef]
- McBratney, A.; de Gruijter, J.; Bryce, A. Pedometrics timeline. Geoderma 2019, 338, 568–575. [Google Scholar] [CrossRef]
- Kopačková, V.; Ben-Dor, E. Normalizing reflectance from different spectrometers and protocols with an internal soil standard. Int. J. Remote Sens. 2016, 37, 1276–1290. [Google Scholar] [CrossRef]
- Chabrillat, S.; Gholizadeh, A.; Neumann, C.; Berger, D.; Milewski, R.; Ogen, Y.; Ben-Dor, E. Preparing a soil spectral library using the internal soil standard (ISS) method: Influence of extreme different humidity laboratory conditions. Geoderma 2019, 355, 113855. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Carmon, N.; Klement, A.; Ben-Dor, E.; Borůvka, L. Agricultural soil spectral response and properties assessment: Effects of measurement protocol and data mining technique. Remote Sens. 2017, 9, 1078. [Google Scholar] [CrossRef]
- Genot, V.; Colinet, G.; Bock, L.; Vanvyve, D.; Reusen, Y. Near infrared reflectance spectroscopy for estimating soil characteristics valuable in the diagnosis of soil fertility. J. Near Infrared Spectrosc. 2011, 19, 117–138. [Google Scholar] [CrossRef]
- Knox, N.M.; Grunwald, S.; McDowell, M.L.; Bruland, G.L.; Myers, D.B.; Harris, W.G. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma 2015, 239, 229–239. [Google Scholar] [CrossRef]
- Riedel, F.; Denk, M.; Müller, I.; Barth, N.; Gläßer, C. Prediction of soil parameters using the spectral range between 350 and 15,000 nm: A case study based on the permanent soil monitoring program in saxony, Germany. Geoderma 2018, 315, 188–198. [Google Scholar] [CrossRef]
Model | R2 | Total | Africa | Asia | Europe | North America | Oceania | South America |
---|---|---|---|---|---|---|---|---|
ExCSSL Clay | 0–0.3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0.3–0.5 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | |
0.5–0.7 | 8 | 3 | 1 | 2 | 1 | 0 | 1 | |
0.7–0.8 | 11 | 1 | 2 | 4 | 1 | 1 | 2 | |
>0.8 | 40 | 11 | 9 | 13 | 3 | 1 | 3 | |
BraSpecS Clay | 0–0.3 | 14 | 3 | 3 | 6 | 1 | 0 | 1 |
0.3–0.5 | 25 | 6 | 5 | 8 | 2 | 2 | 2 | |
0.5–0.7 | 12 | 4 | 1 | 5 | 0 | 0 | 2 | |
0.7–0.8 | 9 | 1 | 1 | 4 | 2 | 0 | 1 | |
>0.8 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | |
GSSL Clay | 0–0.3 | 3 | 1 | 1 | 1 | 0 | 0 | 0 |
0.3–0.5 | 6 | 2 | 1 | 3 | 0 | 0 | 0 | |
0.5–0.7 | 18 | 3 | 4 | 8 | 1 | 0 | 2 | |
0.7–0.8 | 18 | 5 | 3 | 4 | 3 | 1 | 2 | |
>0.8 | 18 | 4 | 3 | 7 | 1 | 1 | 2 |
Model | R2 | Total | Africa | Asia | Europe | North America | Oceania | South America |
---|---|---|---|---|---|---|---|---|
ExCSSL SOC | 0–0.3 | 3 | 0 | 0 | 3 | 0 | 0 | 0 |
0.3–0.5 | 9 | 0 | 0 | 9 | 0 | 0 | 0 | |
0.5–0.7 | 17 | 0 | 2 | 11 | 1 | 0 | 3 | |
0.7–0.8 | 9 | 4 | 1 | 0 | 4 | 0 | 0 | |
>0.8 | 19 | 7 | 7 | 1 | 2 | 1 | 1 | |
BraSpecS SOC | 0–0.3 | 38 | 3 | 5 | 22 | 3 | 1 | 4 |
0.3–0.5 | 11 | 5 | 2 | 1 | 1 | 0 | 2 | |
0.5–0.7 | 6 | 2 | 2 | 1 | 1 | 0 | 0 | |
0.7–0.8 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | |
>0.8 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | |
GSSL SOC | 0–0.3 | 17 | 4 | 5 | 4 | 1 | 1 | 2 |
0.3–0.5 | 14 | 2 | 1 | 6 | 2 | 0 | 3 | |
0.5–0.7 | 22 | 3 | 3 | 13 | 2 | 0 | 1 | |
0.7–0.8 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | |
>0.8 | 2 | 1 | 1 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demattê, J.A.M.; Paiva, A.F.d.S.; Poppiel, R.R.; Rosin, N.A.; Ruiz, L.F.C.; Mello, F.A.d.O.; Minasny, B.; Grunwald, S.; Ge, Y.; Ben Dor, E.; et al. The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication. Remote Sens. 2022, 14, 740. https://doi.org/10.3390/rs14030740
Demattê JAM, Paiva AFdS, Poppiel RR, Rosin NA, Ruiz LFC, Mello FAdO, Minasny B, Grunwald S, Ge Y, Ben Dor E, et al. The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication. Remote Sensing. 2022; 14(3):740. https://doi.org/10.3390/rs14030740
Chicago/Turabian StyleDemattê, José A. M., Ariane Francine da Silveira Paiva, Raul Roberto Poppiel, Nícolas Augusto Rosin, Luis Fernando Chimelo Ruiz, Fellipe Alcantara de Oliveira Mello, Budiman Minasny, Sabine Grunwald, Yufeng Ge, Eyal Ben Dor, and et al. 2022. "The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication" Remote Sensing 14, no. 3: 740. https://doi.org/10.3390/rs14030740
APA StyleDemattê, J. A. M., Paiva, A. F. d. S., Poppiel, R. R., Rosin, N. A., Ruiz, L. F. C., Mello, F. A. d. O., Minasny, B., Grunwald, S., Ge, Y., Ben Dor, E., Gholizadeh, A., Gomez, C., Chabrillat, S., Francos, N., Ayoubi, S., Fiantis, D., Biney, J. K. M., Wang, C., Belal, A., ... Silvero, N. E. Q. (2022). The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication. Remote Sensing, 14(3), 740. https://doi.org/10.3390/rs14030740