Phenotypic Traits Estimation and Preliminary Yield Assessment in Different Phenophases of Wheat Breeding Experiment Based on UAV Multispectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site (Field) and Experimental Design of the Study
2.2. Data Acquisition
2.2.1. Phenological Development Stages and Traditional Phenotypic Traits
2.2.2. Grain Yield (GY)
2.2.3. Biophysical Variables Measured by Non-Invasive Methods
2.2.4. UAV Data Collection
2.2.5. Additional Data from the Zlatia Site
2.3. Image Processing and Data Extraction
2.4. Modelling and Statistical Analysis
2.4.1. Parametric and Nonparametric Regression Models for GY and Biophysical Variables Retrieval
Name | Formula 1 | Scale | Related to | Reference |
---|---|---|---|---|
R | Ra | Canopy | LAI | [39] |
Canopy | Chl | [55] | ||
SR | Ra/Rb | Leaf & Canopy | Chl | [55] |
Canopy | CCC, LAI | [36] | ||
Canopy | GY prediction | [30,32] | ||
DVI | Ra − Rb | Leaf & Canopy | Chl | [55] |
ND | (Ra − Rb)/(Ra + Rb) | Canopy | GY prediction | [30,32] |
Canopy | fAPAR, fCover | [36] | ||
mSR | (Ra − Rc)/(Rb − Rc) | Leaf | Chl | [55] |
mSR2 | (Ra/Rb) − 1 | Canopy | GY prediction | [30] |
Canopy | Chl | [56] | ||
mND | (Ra − Rb)/(Ra + Rb − 2Rc) | Leaf | Chl | [55] |
Canopy | LAI | [39] | ||
3SBI-Verrelst | (Ra − Rc)/(Rb + Rc) | Canopy | LAI | [41] |
3SBI-Tian | (Ra − Rb − Rc)/(Ra + Rb + Rc) | Canopy | LAI | [39,57] |
3SBI-Wang | (Ra − Rb + 2Rc)/(Ra + Rb − 2Rc) | Leaf | Chl | [58] |
Canopy | LAI | [39] | ||
3BSI-Dash | (Ra − Rb)/(Rb − Rc) | Canopy | Chl | [59] |
4BSI | ((Ra − Rb)/(Ra + Rb))/((Rc − Rd)/(Rc + Rd)) | Canopy | Above ground dry biomass | [36] |
Name | Function |
---|---|
linear | F(x) = a × x + b |
exponential | F(x) = a × exp(b × x) |
logarithmic | F(x) = a + b × log(x) |
power | F(x) = a × xb |
polynomial | F(x) = a2 × x2 + a1 × x + a0 |
2.4.2. Statistical Analysis of Phenotypic Variation and Relationship with Yield
3. Results
3.1. Biophysical Variables Retrieval
3.2. GY Retrieval
3.3. Visual Inspection of the GY and Remotely Sensed Phenotypic Traits and Their Uncertainty Characterisation
3.4. Phenotypic Variation and Relationship with Yield
4. Discussion
4.1. Biophysical Variables and Yield Retrieval from UAV Data
4.2. Remotely Sensed and Traditional Phenotypic Traits for Plant Breeding
4.3. Limitations, Challenges, and Future Opportunities
- (1)
- The developed biophysical variable retrieval models are overfitted and less robust than expected, except for LCC and LAI. The dataset was from two sites, one sown with winter durum wheat (Triticum turgidum L. var. durum), Chirpan, and the other winter wheat (Triticum aestivum L.), Zlatia. However, studies [36] suggest that the relationship between spectral data and biophysical variables is variety-specific. Hence, the robustness of the models throughout the season with data from the same site as well as from several consecutive harvest years remains to be evaluated.
- (2)
- Vegetation growth is a dynamic and accumulative process and representing it by just a few data acquisitions can be limiting. Differences found in certain phenophases can be compensated in others [84]. Including more dates and using multitemporal data would help to better describe crop growth [84,85]. Moreover, the selection of the phenological stage, and therefore UAV imagery dates, has an important impact on the capability to determine differences in the genotypes [84].
- (3)
- In the current study only four spectral broadbands are analysed, whereas spectroradiometers, or hyperspectral UAV imagery, provide many spectral narrow bands allowing for more accurate analysis and assessment of their correlation with a wider range of biophysical traits such as pigments other than chlorophyll, plant macronutrients, lignin and cellulose, polyphenols [86], or water content [87,88].
- (4)
- Uncertainty analysis was carried out only for uncertainties that arise from the parameterizations and assumptions specific to retrieval algorithms. This, however, is only one main category of uncertainty [89]. The uncertainty in the acquisition of in situ data by non-invasive methods can lead to important bias. Its correction can reduce the nRMSE between the non-invasive and destructive methods from 50% to 17% [90]. The last category is the errors referred to the sensor, including sensor calibrations and radiometric, geometric, and atmospheric corrections [34]. In addition, uncertainty propagation study is necessary to give the plant breeders a better understanding of the precision and accuracy of the proposed remote sensing phenotypic traits.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Competitive Variety Trial CVT 1 | Competitive Variety Trial CVT 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Min. Value | Max. Value | Mean | Std. Dev | Genotype | Min. Value | Max. Value | Mean | Std. Dev | ||
Code | Name | Code | Name | ||||||||
1 | Beloslava | 8.8 | 10.3 | 9.4 | 0.7 | 1 | D-8156 | 8.8 | 9.5 | 9.2 | 0.3 |
2 | Vazhod | 8.0 | 9.9 | 9.0 | 0.8 | 2 | D-8405 | 8.0 | 9.9 | 9.1 | 0.8 |
3 | Progres | 5.8 | 7.3 | 6.6 | 0.6 | 3 | D-8401 | 9.0 | 10.3 | 9.8 | 0.6 |
4 | Viktoriya | 8.0 | 10.3 | 9.2 | 0.9 | 4 | D-8298 | 8.0 | 9.4 | 9.0 | 0.7 |
5 | Zvezditsa | 7.9 | 9.3 | 8.5 | 0.6 | 5 | D-8379 | 9.8 | 10.0 | 10.0 | 0.1 |
6 | Deyana | 7.5 | 9.6 | 8.5 | 0.8 | 6 | D-8000 | 9.1 | 10.7 | 9.8 | 0.7 |
7 | Elbrus | 9.0 | 9.7 | 9.4 | 0.3 | 7 | D-8313 | 8.0 | 9.0 | 8.5 | 0.5 |
8 | Deni | 8.8 | 9.5 | 9.3 | 0.3 | 8 | DV-8417 | 9.0 | 9.9 | 9.3 | 0.4 |
9 | Trakiets | 9.0 | 10.5 | 9.6 | 0.7 | 9 | D-8404 | 8.4 | 10.0 | 9.3 | 0.7 |
10 | Kehlibar | 9.4 | 10.4 | 9.9 | 0.4 | 10 | D-8031 | 9.7 | 10.7 | 10.1 | 0.4 |
11 | Reyadur | 9.4 | 10.6 | 10.1 | 0.5 | 11 | D-8484 | 8.0 | 8.9 | 8.3 | 0.4 |
12 | Tserera | 8.8 | 9.7 | 9.2 | 0.4 | 12 | D-8456 | 9.0 | 9.5 | 9.2 | 0.2 |
13 | Mirela St | 7.8 | 9.1 | 8.4 | 0.7 | 13 | Mirela St | 8.9 | 9.0 | 8.9 | 0.1 |
14 | Predel St | 9.1 | 10.3 | 9.8 | 0.5 | 14 | Predel St | 10.2 | 10.7 | 10.4 | 0.2 |
15 | Raylidur | 8.9 | 10.0 | 9.7 | 0.5 | 15 | D-8471 | 9.8 | 10.1 | 10.0 | 0.1 |
16 | Saya | 9.1 | 10.6 | 10.1 | 0.7 | 16 | D-8472 | 9.7 | 10.2 | 9.8 | 0.2 |
17 | Heliks | 9.4 | 10.2 | 9.9 | 0.4 | 17 | D-8516 | 9.1 | 10.7 | 9.9 | 0.8 |
18 | Viomi | 9.3 | 9.9 | 9.6 | 0.3 | 18 | D-8346 | 8.6 | 10.6 | 9.8 | 0.9 |
19 | D-8159 | 9.8 | 10.1 | 9.9 | 0.1 | 19 | D-8469 | 9.2 | 10.8 | 10.0 | 0.6 |
20 | D-8243 | 9.8 | 10.2 | 10.0 | 0.2 | 20 | D-8495 | 10.1 | 10.4 | 10.3 | 0.2 |
21 | D-8327 | 9.8 | 10.9 | 10.2 | 0.5 | 21 | D-8483 | 9.9 | 10.6 | 10.1 | 0.3 |
22 | D-8091 | 9.1 | 9.5 | 9.3 | 0.2 | 22 | D-8299 | 9.1 | 9.3 | 9.2 | 0.1 |
23 | D-8148 | 9.9 | 10.6 | 10.2 | 0.3 | 23 | D-8551 | 9.1 | 10.3 | 9.8 | 0.5 |
24 | D-8326 | 8.4 | 9.8 | 9.3 | 0.6 | 24 | D-8271 | 9.1 | 10.1 | 9.6 | 0.4 |
25 | D-7553 | 9.3 | 10.2 | 9.8 | 0.4 | 25 | D-8527 | 9.7 | 10.3 | 10.0 | 0.2 |
26 | D-8036 | 8.0 | 10.0 | 9.1 | 0.9 | 26 | D-8526 | 8.7 | 9.1 | 9.0 | 0.18 |
Field Campaign Competitive Variety Trial | Genotype Code in (Phenological Development Stage) | Genotype Code with (Plant Height in cm) |
---|---|---|
27–28 May 2021 CVT 1 |
|
|
27–28 May 2021 CVT 2 |
|
|
16–17 June 2021 CVT 1 |
|
|
16–17 June 2021 CVT 2 |
|
|
Trait | Source | SS CVT1 | DoF CVT1 | MS CVT1 | F CVT1 | Sig CVT1 | SS CVT2 | DoF CVT2 | MS CVT2 | F CVT2 | Sig CVT2 |
---|---|---|---|---|---|---|---|---|---|---|---|
LAI05 | Genotype | 5.053 | 25 | 0.202 | 26.6 | *** | 2.000 | 25 | 0.080 | 7.0 | *** |
Replication | 0.294 | 3 | 0.098 | 12.9 | *** | 0.216 | 3 | 0.072 | 6.3 | *** | |
Error | 0.570 | 75 | 0.008 | 0.853 | 75 | 0.011 | |||||
LAI06 | Genotype | 19.433 | 25 | 0.777 | 19.82 | *** | 4.127 | 25 | 0.165 | 4.40 | ** |
Replication | 3.041 | 3 | 1.014 | 25.84 | *** | 10.568 | 3 | 3.523 | 93.96 | *** | |
Error | 2.942 | 75 | 0.039 | 2.812 | 75 | 0.037 | |||||
LCC05 | Genotype | 10281 | 25 | 411 | 8.5 | *** | 3366 | 25 | 135 | 2.2 | * |
Replication | 4067 | 3 | 1356 | 27.9 | *** | 12667 | 3 | 4222 | 69.2 | *** | |
Error | 3647 | 75 | 49 | 4575 | 75 | 61 | |||||
LCC06 | Genotype | 111898 | 25 | 4476 | 16.52 | *** | 33823 | 25 | 1353 | 4.77 | ** |
Replication | 28780 | 3 | 9593 | 35.40 | *** | 46203 | 3 | 15401 | 54.33 | *** | |
Error | 20325 | 75 | 271 | 21260 | 75 | 283 | |||||
GY | Genotype | 57.319 | 25 | 2.293 | 8.36 | *** | 30.467 | 25 | 1.219 | 6.73 | *** |
Replication | 4.038 | 3 | 1.346 | 4.91 | *** | 3.868 | 3 | 1.289 | 7.13 | *** | |
Error | 20.573 | 75 | 0.274 | 13.572 | 75 | 0.181 | |||||
T | Genotype | 25.826 | 25 | 1.033 | 13.45 | *** | 25.230 | 25 | 1.009 | 17.93 | *** |
Replication | 1.936 | 3 | 0.645 | 8.40 | *** | 0.468 | 3 | 0.156 | 2.77 | * | |
Error | 5.759 | 75 | 0.077 | 4.222 | 75 | 0.056 | |||||
H | Genotype | 6010 | 25 | 240 | 836 | *** | 2522 | 25 | 101 | 294 | *** |
Replication | 1 | 3 | 0 | 1 | n.s. | 2 | 3 | 1 | 2 | n.s. | |
Error | 22 | 75 | 0 | 26 | 75 | 0 |
GC | LAI05 | LAI06 | LCC05 | LCC06 | Yield | Tillering | H | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CVT1 | ||||||||||||||
1 | 5.1 | fgh | 3.9 | gh | 433.6 | abcd | 474.5 | defghi | 9.37 | defgh | 4.5 | g | 102.5 | i |
2 | 4.9 | bc | 3.3 | c | 428.4 | ab | 455.1 | d | 9.03 | bcde | 3.7 | bcde | 104.7 | j |
3 | 5.1 | fg | 2.4 | a | 436.5 | abcd | 385.0 | a | 6.63 | a | 3.0 | a | 119.5 | n |
4 | 4.9 | bc | 3.8 | efgh | 459.5 | jkl | 465.2 | defg | 9.16 | bcdef | 3.7 | cde | 112.7 | m |
5 | 5.1 | defg | 2.9 | b | 431.5 | abc | 409.6 | bc | 8.51 | bcd | 3.1 | a | 112.2 | lm |
6 | 5.2 | ghij | 2.5 | a | 437.8 | abcde | 386.5 | ab | 8.47 | bc | 4.0 | ef | 120.5 | o |
7 | 5.1 | cdef | 3.7 | defg | 449.8 | fghijk | 471.1 | defghi | 9.42 | efgh | 4.5 | g | 111.5 | l |
8 | 5.3 | j | 2.9 | b | 436.0 | abcd | 419.2 | c | 9.27 | cdefg | 3.3 | abc | 104.5 | j |
9 | 5.2 | ghij | 3.8 | fgh | 448.0 | efghij | 497.5 | ijk | 9.57 | efgh | 3.2 | ab | 101.5 | h |
10 | 5.2 | fghi | 3.8 | efgh | 449.3 | fghijk | 494.4 | hijk | 9.87 | efgh | 3.2 | a | 101.5 | h |
11 | 5.1 | fgh | 3.9 | gh | 451.2 | fghijk | 489.3 | fghijk | 10.07 | gh | 3.7 | cde | 99.5 | e |
12 | 5.2 | fghi | 3.5 | cdef | 431.3 | abc | 453.5 | d | 9.16 | bcdef | 3.1 | a | 104.2 | j |
13 | 5.3 | ij | 3.5 | cde | 426.9 | a | 454.8 | d | 8.38 | b | 3.1 | a | 89.5 | a |
14 | 5.3 | ij | 3.7 | defg | 439.6 | bcdef | 469.1 | defgh | 9.78 | efgh | 3.2 | a | 96.5 | c |
15 | 5.0 | bcde | 3.4 | cd | 441.7 | cdefg | 457.8 | de | 9.67 | efgh | 2.9 | a | 100.5 | fg |
16 | 5.1 | efg | 3.9 | gh | 455.2 | ijkl | 492.3 | ghijk | 10.07 | gh | 4.2 | fg | 97.2 | cd |
17 | 5.0 | cdef | 3.7 | defg | 444.1 | defghi | 464.6 | defg | 9.93 | efgh | 3.7 | de | 104.5 | j |
18 | 5.1 | fgh | 3.7 | defg | 450.8 | fghijk | 467.7 | defgh | 9.54 | efgh | 3.2 | a | 109.2 | k |
19 | 5.0 | bcd | 3.9 | gh | 451.9 | ghijk | 498.0 | ijk | 9.89 | efgh | 3.3 | abc | 97.7 | d |
20 | 5.3 | j | 3.8 | efgh | 441.9 | cdefgh | 477.7 | defghi | 9.95 | fgh | 4.1 | efg | 95.5 | b |
21 | 4.4 | a | 4.1 | h | 460.5 | kl | 513.0 | k | 10.16 | gh | 3.1 | a | 95.5 | b |
22 | 5.0 | bcd | 3.9 | fgh | 450.2 | fghijk | 483.7 | efghij | 9.33 | cdefgh | 3.0 | a | 100.7 | gh |
23 | 5.4 | j | 3.7 | defg | 451.7 | ghijk | 466.4 | defg | 10.22 | h | 3.0 | a | 102.5 | i |
24 | 4.5 | a | 3.9 | gh | 453.5 | hijkl | 509.3 | jk | 9.29 | cdefg | 3.3 | abcd | 89.5 | a |
25 | 4.8 | b | 3.9 | gh | 463.2 | l | 489.5 | fghijk | 9.80 | efgh | 4.5 | g | 99.7 | ef |
26 | 5.3 | hij | 3.5 | cde | 449.0 | efghijk | 462.4 | def | 9.14 | bcdef | 3.0 | a | 105.0 | j |
CVT2 | ||||||||||||||
1 | 5.3 | fghiklm | 3.5 | a | 448.6 | abc | 461.9 | ab | 9.17 | cde | 3.6 | bcd | 108.5 | n |
2 | 5.2 | efghi | 3.9 | bcdefghi | 449.6 | abcd | 500.5 | defghij | 9.12 | bcd | 4.6 | f | 101.5 | gh |
3 | 5.4 | ml | 4.2 | hi | 456.9 | bcdef | 507.2 | efghij | 9.83 | defghij | 4.0 | de | 99.5 | e |
4 | 5.0 | ab | 3.9 | bcdefghi | 455.0 | bcdef | 492.5 | cdefghi | 8.96 | abc | 4.2 | ef | 99 | de |
5 | 5.2 | efghik | 4.1 | efghi | 459.4 | bcdef | 500.7 | defghij | 9.95 | ghij | 3.0 | a | 99.5 | e |
6 | 5.1 | abcde | 3.9 | bcdefghi | 465.3 | f | 476.5 | abcd | 9.80 | defghij | 3.1 | a | 109.5 | o |
7 | 5.3 | efghikl | 3.7 | abcd | 454.5 | bcdef | 492.1 | cdefghi | 8.47 | ab | 3.4 | abc | 105.5 | l |
8 | 5.0 | abc | 3.7 | abcd | 465.1 | ef | 466.0 | abc | 9.33 | cdefgh | 3.3 | ab | 114.5 | p |
9 | 5.2 | bcdefg | 3.7 | abc | 454.6 | bcdef | 503.7 | defghij | 9.28 | cdefg | 4.5 | f | 104.5 | k |
10 | 5.2 | bcdef | 3.9 | bcdefg | 457.9 | bcdef | 488.0 | bcdefgh | 10.13 | ij | 4.4 | f | 107.5 | m |
11 | 5.4 | kml | 4.0 | cdefghi | 453.2 | abcdef | 513.9 | hij | 8.32 | a | 3.1 | a | 98.5 | d |
12 | 5.4 | l | 3.7 | abc | 454.0 | bcdef | 482.4 | abcdefg | 9.19 | cdef | 3.2 | a | 101.7 | hi |
13 | 5.3 | fghiklm | 3.7 | abcde | 447.2 | ab | 479.6 | abcdef | 8.93 | abc | 3.2 | a | 89.5 | a |
14 | 5.4 | ml | 3.9 | bcdefgh | 451.7 | abcde | 482.9 | abcdefg | 10.38 | j | 3.2 | a | 100.7 | fg |
15 | 5.4 | ikml | 4.1 | fghi | 455.6 | bcdef | 517.0 | ij | 9.95 | ghij | 3.3 | ab | 100.5 | f |
16 | 5.4 | ghiklm | 4.2 | ghi | 460.0 | bcdef | 518.6 | ij | 9.84 | efghij | 4.2 | ef | 99.5 | e |
17 | 5.2 | cdefg | 4.0 | defghi | 448.3 | ab | 501.2 | defghij | 9.89 | fghij | 3.7 | cd | 102.2 | hi |
18 | 5.1 | abcd | 3.5 | a | 440.8 | a | 459.9 | a | 9.79 | defghij | 4.5 | f | 103.2 | j |
19 | 5.4 | hikml | 4.2 | hi | 455.7 | bcdef | 518.3 | ij | 10.01 | hij | 3.8 | cd | 101.5 | gh |
20 | 5.4 | kml | 3.7 | abcde | 453.0 | abcdef | 479.2 | abcde | 10.29 | ij | 3.4 | abc | 102.5 | ij |
21 | 5.3 | fghiklm | 4.2 | i | 462.2 | def | 522.9 | j | 10.14 | ij | 3.2 | a | 102.5 | ij |
22 | 5.0 | a | 3.7 | ab | 462.1 | cdef | 476.3 | abcd | 9.15 | bcde | 3.8 | cd | 104.5 | k |
23 | 5.3 | fghiklm | 3.8 | abcdef | 459.0 | bcdef | 508.1 | fghij | 9.77 | defghij | 3.6 | bcd | 97.5 | c |
24 | 5.2 | bcdefg | 4.0 | bcdefghi | 462.3 | def | 510.6 | ghij | 9.63 | cdefghi | 3.6 | bcd | 99.5 | e |
25 | 5.2 | defgh | 4.0 | bcdefghi | 458.4 | bcdef | 505.9 | efghij | 10.03 | hij | 4.2 | ef | 103.2 | j |
26 | 5.4 | ml | 4.0 | cdefghi | 453.8 | bcdef | 507.9 | fghij | 8.97 | abc | 3.2 | a | 92.5 | b |
References
- Dragov, R.; Dechev, D. Phenotypic Stability of Yield on Varieties and Lines of Durum Wheat (Triticum durum Desf.). Agric. Sci. Technol. 2015, 7, 204–207. [Google Scholar]
- Dimitrov, E.; Uhr, Z.; Velcheva, N. Genetic Distance of Common Winter Wheat Varieties. Genetika 2021, 53, 521–532. [Google Scholar] [CrossRef]
- Chawade, A.; Van Ham, J.; Blomquist, H.; Bagge, O.; Alexandersson, E.; Ortiz, R. High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef]
- Jin, X.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.; Li, Z.; Ming, B.; et al. High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geosci. Remote Sens. Mag. 2021, 9, 200–231. [Google Scholar] [CrossRef]
- Atkinson, J.A.; Jackson, R.J.; Bentley, A.R.; Ober, E.; Wells, D.M. Field Phenotyping for the Future. Annu. Plant Rev. Online 2018, 1, 719–736. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Yang, C. A Review on Plant High-Throughput Phenotyping Traits Using UAV-Based Sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Qiu, R.; Wei, S.; Zhang, M.; Li, H.; Sun, H.; Liu, G.; Li, M. Sensors for Measuring Plant Phenotyping: A Review. Int. J. Agric. Biol. Eng. 2018, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Chen, S.; Zhang, C.; Zhang, Y.; He, Y. A Comprehensive Review on Recent Applications of Unmanned Aerial Vehicle Remote Sensing with Various Sensors for High-Throughput Plant Phenotyping. Comput. Electron. Agric. 2021, 182, 106033. [Google Scholar] [CrossRef]
- Machwitz, M.; Pieruschka, R.; Berger, K.; Schlerf, M.; Aasen, H.; Fahrner, S.; Jiménez-Berni, J.; Baret, F.; Rascher, U. Bridging the Gap Between Remote Sensing and Plant Phenotyping—Challenges and Opportunities for the Next Generation of Sustainable Agriculture. Front. Plant Sci. 2021, 12, 749374. [Google Scholar] [CrossRef]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.; Neely, H.L.; et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, M.; Ibrahim, A.M.H.; Xue, Q.; Jung, J.; Chang, A.; Rudd, J.C.; Maeda, M.; Rajan, N.; Neely, H.; Landivar, J. Assessing Winter Wheat Foliage Disease Severity Using Aerial Imagery Acquired from Small Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 176, 105665. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Fernandez-Gallego, J.A.; Vergara-Díaz, O.; Nieto-Taladriz, M.T.; Araus, J.L. UAV and Ground Image-Based Phenotyping: A Proof of Concept with Durum Wheat. Remote Sens. 2019, 11, 1244. [Google Scholar] [CrossRef] [Green Version]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Front. Plant Sci. 2017, 8, 1114. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [Green Version]
- Buchaillot, M.; Gracia-Romero, A.; Vergara-Diaz, O.; Zaman-Allah, M.A.; Tarekegne, A.; Cairns, J.E.; Prasanna, B.M.; Araus, J.L.; Kefauver, S.C. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques. Sensors 2019, 19, 1815. [Google Scholar] [CrossRef] [Green Version]
- Castro, W.; Marcato, J., Jr.; Polidoro, C.; Osco, L.P.; Gonçalves, W.; Rodrigues, L.; Santos, M.; Jank, L.; Barrios, S.; Valle, C.; et al. Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery. Sensors 2020, 20, 4802. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Yang, G.; Yang, H.; Xu, B.; Li, Z.; Yang, X. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach. Front. Plant Sci. 2018, 9, 1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, W.; Zhang, M.; Bian, D.; Liu, Z.; Huang, J.; Wang, W.; Wu, J.; Guo, H. Phenotyping of Corn Plants Using Unmanned Aerial Vehicle (UAV) Images. Remote Sens. 2019, 11, 2021. [Google Scholar] [CrossRef] [Green Version]
- Chivasa, W.; Mutanga, O.; Biradar, C. UAV-Based Multispectral Phenotyping for Disease Resistance to Accelerate Crop Improvement under Changing Climate Conditions. Remote Sens. 2020, 12, 2445. [Google Scholar] [CrossRef]
- Stewart, E.L.; Wiesner-Hanks, T.; Kaczmar, N.; DeChant, C.; Wu, H.; Lipson, H.; Nelson, R.J.; Gore, M.A. Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning. Remote Sens. 2019, 11, 2209. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, S.F.; Rizza, F.; Badeck, F.W.; Berton, A.; Delbono, S.; Gioli, B.; Toscano, P.; Zaldei, A.; Matese, A. UAV-Based High-Throughput Phenotyping to Discriminate Barley Vigour with Visible and near-Infrared Vegetation Indices. Int. J. Remote Sens. 2018, 39, 5330–5344. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.; Serret Molins, M.D.; Araus, J.L. Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use Efficiency in Hybrid and Conventional Barley. Front. Plant Sci. 2017, 8, 1733. [Google Scholar] [CrossRef]
- Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, Chlorophyll and Nitrogen Contents in Sugar Beet Crops from Multi-Angular Optical Remote Sensing: Comparison of Vegetation Indices and PROSAIL Inversion for Field Phenotyping. Field Crops Res. 2017, 210, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Lyu, S.; Noguchi, N.; Ospina, R.; Kishima, Y. Development of Phenotyping System Using Low Altitude UAV Imagery and Deep Learning. Int. J. Agric. Biol. Eng. 2021, 14, 207–215. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat Yield Prediction Using Machine Learning and Advanced Sensing Techniques. Comput. Electron. Agric. 2016, 121, 57–65. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Tulpan, D.; Eskandari, M. Using Hybrid Artificial Intelligence and Evolutionary Optimization Algorithms for Estimating Soybean Yield and Fresh Biomass Using Hyperspectral Vegetation Indices. Remote Sens. 2021, 13, 2555. [Google Scholar] [CrossRef]
- GEOGLAM Essential Agricultural Variables Working Group. Available online: https://earthobservations.org/geoglam.php?t=eo_data_coordination&s1=eodc_eav_wg (accessed on 3 November 2021).
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.-P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef] [Green Version]
- Serrano, L.; Filella, I.; Peñuelas, J. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, P.; Kamenova, I.; Roumenina, E.; Filchev, L.; Ilieva, I.; Jelev, G.; Gikov, A.; Banov, M.; Krasteva, V.; Kolchakov, V.; et al. Estimation of Biophysical and Biochemical Variables of Winter Wheat through Sentinel-2 Vegetation Indices. Bulg. J. Agric. Sci. 2019, 25, 14. [Google Scholar]
- Rivera, J.P.; Verrelst, J.; Delegido, J.; Veroustraete, F.; Moreno, J. On the Semi-Automatic Retrieval of Biophysical Parameters Based on Spectral Index Optimization. Remote Sens. 2014, 6, 4927–4951. [Google Scholar] [CrossRef] [Green Version]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop Nitrogen Monitoring: Recent Progress and Principal Developments in the Context of Imaging Spectroscopy Missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Verrelst, J.; Pablo, J.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-valls, G.; Moreno, J. Experimental Sentinel-2 LAI Estimation Using Parametric, Non-Parametric and Physical Retrieval Methods—A Comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; FAO, Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Panayotova, G.; Kostadinova, S.; Aleksieva, S.; Slavova, N.; Aladzhova, C.; Kostadinova, S.; Aleksieva, S.; Slavova, N.; Aladzhova, C. Nitrogen and phosphorus balances as dependent on durum wheat fertilization. Bulg. J. Agric. Sci. 2018, 24, 9–17. [Google Scholar]
- Meier, U. Growth Stages of Mono and Dicotyledonous Plants. BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001. [Google Scholar]
- Meier, U. (Ed.) Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018. [Google Scholar]
- Ganeva, D.; Roumenina, E.; Jelev, G.; Banov, M.; Krasteva, V.; Kolchakov, V. Applicability of Parametric and Nonparametric Regression Models for Retrieval of Crop Canopy Parameters for Winter Rapeseed and Wheat Crops Using Sentinel-2 Multispectral Data. In Proceedings of the Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), Paphos, Cyprus, 27 June 2019; Volume 11174. [Google Scholar]
- Roumenina, E.; Jelev, G.; Dimitrov, P.; Filchev, L.; Kamenova, I.; Gikov, A.; Banov, M.; Veneta, K. Qualitative Evaluation and Within-Field Mapping of Winter Wheat Crop Condition Using Multispectral Remote Sensing Data. Bulg. J. Agric. Sci. 2020, 26, 1129–1142. [Google Scholar]
- Geladi, P.; Kowalski, B.R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.; Golowich, S.; Smola, A. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. In Proceedings of the 9th International Conference on Neural Information Processing Systems, Denver, CO, USA, 3–5 December 1996; Volume 9, pp. 281–287. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2006. [Google Scholar]
- Ganeva, D. Semiautomatic Retrieval of Biomass Based on Vegetation Index Optimization and Learning Machine Methods for Winter Rapeseed Crops. In Proceedings of the SES 2018—Fourteenth International Scientific Conference—Space, Ecology, Safety, Sofia, Bulgaria, 7–9 November 2018; pp. 299–305. [Google Scholar]
- Richter, K.; Atzberger, C.; Hank, T.B.; Mauser, W. Derivation of Biophysical Variables from Earth Observation Data: Validation and Statistical Measures. J. Appl. Remote Sens. 2012, 6, 1–24. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Dufrêne, E. Towards Universal Broad Leaf Chlorophyll Indices Using PROSPECT Simulated Database and Hyperspectral Reflectance Measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Tian, Y.C.; Gu, K.J.; Chu, X.; Yao, X.; Cao, W.X.; Zhu, Y. Comparison of Different Hyperspectral Vegetation Indices for Canopy Leaf Nitrogen Concentration Estimation in Rice. Plant Soil 2013, 376, 193–209. [Google Scholar] [CrossRef]
- Wang, W.; Yao, X.; Yao, X.; Tian, Y.; Liu, X.; Ni, J.; Cao, W.; Zhu, Y. Estimating Leaf Nitrogen Concentration with Three-Band Vegetation Indices in Rice and Wheat. Field Crops Res. 2012, 129, 90–98. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. Evaluation of the MERIS Terrestrial Chlorophyll Index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Moreno, J.; Camps-Valls, G. Gaussian Processes Uncertainty Estimates in Experimental Sentinel-2 LAI and Leaf Chlorophyll Content Retrieval. ISPRS J. Photogramm. Remote Sens. 2013, 86, 157–167. [Google Scholar] [CrossRef]
- Islam, M.R.; Faruquei, M.A.B.; Bhuiyan, M.A.R.; Biswas, P.S.; Salam, M.A. Genetic Diversity in Irrigated Rice. Pak. J. Biol. Sci. 2004, 7, 226–229. [Google Scholar] [CrossRef]
- Khodadadi, M.; Fotokian, M.H.; Miransari, M. Genetic Diversity of Wheat (Triticum aestivum L.) Genotypes Based on Cluster and Principal Component Analyses for Breeding Strategies. Aust. J. Crop Sci. 2011, 5, 17–24. [Google Scholar]
- Kabir, R.; Intikhab, A.; Zahoor, M.; Ahmed, I.; Khan, B.; Zakriya, M.; Rehman, M.; Muneer, M.; Munir, M. Multivariate Analysis of Genetic Divergence in Wheat (Triticuma estivum) Using Yield Traits. Int. J. Biosci. IJB 2017, 11, 43–48. [Google Scholar] [CrossRef]
- Dragov, R.; Dechev, D.; Taneva, K. Genetic Distance of New Bulgarian Durum Wheat Varieties and Breeding Lines of FCI-Chirpan, Bulgaria. Int. J. Innov. Approaches Agric. Res. 2019, 3, 402–410. [Google Scholar] [CrossRef]
- Lidanski, T. Statistical Methods in Biology and Agriculture; Zemizdat: Sofia, Bulgaria, 1988. [Google Scholar]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Kono, Y.; Win, A.; Matsui, T.; Tanaka, T.S.T. Predicting Within-Field Variability in Grain Yield and Protein Content of Winter Wheat Using UAV-Based Multispectral Imagery and Machine Learning Approaches. Plant Prod. Sci. 2021, 24, 137–151. [Google Scholar] [CrossRef]
- Ganeva, D.; Roumenina, E. Remote Estimation of Crop Canopy Parameters by Statistical Regression Algorithms for Winter Rapeseed Using Sentinel-2 Multispectral Images. Aerosp. Res. Bulg. 2018, 30, 75–95. [Google Scholar] [CrossRef]
- Svensgaard, J.; Jensen, S.M.; Christensen, S.; Rasmussen, J. The Importance of Spectral Correction of UAV-Based Phenotyping with RGB Cameras. Field Crops Res. 2021, 269, 108177. [Google Scholar] [CrossRef]
- Rufo, R.; Soriano, J.M.; Villegas, D.; Royo, C.; Bellvert, J. Using Unmanned Aerial Vehicle and Ground-Based RGB Indices to Assess Agronomic Performance of Wheat Landraces and Cultivars in a Mediterranean-Type Environment. Remote Sens. 2021, 13, 1187. [Google Scholar] [CrossRef]
- Berger, K.; Atzberger, C.; Danner, M.; Wocher, M.; Mauser, W.; Hank, T. Model-Based Optimization of Spectral Sampling for the Retrieval of Crop Variables with the PROSAIL Model. Remote Sens. 2018, 10, 2063. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Sun, Z.; Yang, T.; Li, J.; Peng, J.; Zhu, K.; Li, S.; Gong, H.; Lyu, Y.; Li, B.; et al. Estimating Leaf Chlorophyll Content of Crops via Optimal Unmanned Aerial Vehicle Hyperspectral Data at Multi-Scales. Comput. Electron. Agric. 2020, 178, 105786. [Google Scholar] [CrossRef]
- Lv, Z.; Meng, R.; Man, J.; Zeng, L.; Wang, M.; Xu, B.; Gao, R.; Sun, R.; Zhao, F. Modeling of Winter Wheat FAPAR by Integrating Unmanned Aircraft Vehicle-Based Optical, Structural and Thermal Measurement. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102407. [Google Scholar] [CrossRef]
- Cai, W.; Zhao, S.; Wang, Y.; Peng, F.; Heo, J.; Duan, Z. Estimation of Winter Wheat Residue Coverage Using Optical and SAR Remote Sensing Images. Remote Sens. 2019, 11, 1163. [Google Scholar] [CrossRef] [Green Version]
- Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of Ensemble Learning to Predict Wheat Grain Yield Based on UAV-Multispectral Reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Zeng, L.; Peng, G.; Meng, R.; Man, J.; Li, W.; Xu, B.; Lv, Z.; Sun, R. Wheat Yield Prediction Based on Unmanned Aerial Vehicles-Collected Red–Green–Blue Imagery. Remote Sens. 2021, 13, 2937. [Google Scholar] [CrossRef]
- Shafiee, S.; Lied, L.M.; Burud, I.; Dieseth, J.A.; Alsheikh, M.; Lillemo, M. Sequential Forward Selection and Support Vector Regression in Comparison to LASSO Regression for Spring Wheat Yield Prediction Based on UAV Imagery. Comput. Electron. Agric. 2021, 183, 106036. [Google Scholar] [CrossRef]
- Abinasa, M.; Ayana, A.; Bultosa, G. Genetic Variability, Heritability and Trait Associations in Durum Wheat (Triticum turgidum L. Var. Durum) Genotypes. Afr. J. Agric. Res. 2011, 6, 3972–3979. [Google Scholar]
- Tesfaye, T.; Genet, T.; Desalegn, T. Genetic Variability, Heritability and Genetic Diversity of Bread Wheat (Triticum aestivum L.) Genotype in Western Amhara Region, Ethiopia. Wudpecker J. Agric. Res. 2014, 3, 26–34. [Google Scholar]
- Desheva, G.; Cholakov, T. Variability, Heritability and Genetic Progress for Some Yield Components in Common Winter Wheat Genotypes (Triticum aestivum L.). Genet. Plant Physiol. 2014, 4, 191–200. [Google Scholar]
- Mohammadi, R.; Farshadfar, E.; Amri, A. Interpreting Genotype×environment Interactions for Grain Yield of Rainfed Durum Wheat in Iran. Crop J. 2015, 3, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Kaya, Y.; Turkoz, M. Evaluation of genotype by environment interaction for grain yield in durum wheat using non-parametric stability statistics. Turk. J. Field Crops 2016, 21, 50. [Google Scholar] [CrossRef]
- Campos, I.; González-Gómez, L.; Villodre, J.; Calera, M.; Campoy, J.; Jiménez, N.; Plaza, C.; Sánchez-Prieto, S.; Calera, A. Mapping Within-Field Variability in Wheat Yield and Biomass Using Remote Sensing Vegetation Indices. Precis. Agric. 2019, 20, 214–236. [Google Scholar] [CrossRef]
- Borra-Serrano, I.; De Swaef, T.; Quataert, P.; Aper, J.; Saleem, A.; Saeys, W.; Somers, B.; Roldán-Ruiz, I.; Lootens, P. Closing the Phenotyping Gap: High Resolution UAV Time Series for Soybean Growth Analysis Provides Objective Data from Field Trials. Remote Sens. 2020, 12, 1644. [Google Scholar] [CrossRef]
- Homolová, L.; Malenovský, Z.; Clevers, J.G.P.W.; García-Santos, G.; Schaepman, M.E. Review of Optical-Based Remote Sensing for Plant Trait Mapping. Ecol. Complex. 2013, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Verrelst, J.; Rivera, J.P.; Moreno, J. Retrieval of Canopy Water Content of Different Crop Types with Two New Hyperspectral Indices: Water Absorption Area Index and Depth Water Index. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 69–78. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Chen, J.; Zhang, Z.; Fu, Q.; Bian, J.; Cui, T.; Ma, Y. Retrieval of Cotton Plant Water Content by UAV-Based Vegetation Supply Water Index (VSWI). Int. J. Remote Sens. 2020, 41, 4389–4407. [Google Scholar] [CrossRef]
- Malenovský, Z.; Homolová, L.; Lukeš, P.; Buddenbaum, H.; Verrelst, J.; Alonso, L.; Schaepman, M.E.; Lauret, N.; Gastellu-Etchegorry, J.-P. Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies. Surv. Geophys. 2019, 40, 631–656. [Google Scholar] [CrossRef]
- Revill, A.; Florence, A.; MacArthur, A.; Hoad, S.P.; Rees, R.M.; Williams, M. The Value of Sentinel-2 Spectral Bands for the Assessment of Winter Wheat Growth and Development. Remote Sens. 2019, 11, 2050. [Google Scholar] [CrossRef] [Green Version]
Months | Average Daily Air Temperature, °C | Monthly Amount of Precipitation, mm | ||
---|---|---|---|---|
2020–2021 г. | 1928–2021 г. | 2020–2021 г. | 1928–2021 г. | |
October | 15.2 | 12.7 | 67.3 | 38.6 |
November | 6.6 | 7 | 7.4 | 47.3 |
December | 5.8 | 1.4 | 70.4 | 54.0 |
January | 3.2 | −0.2 | 108.6 | 44.3 |
February | 4.5 | 1.7 | 25.8 | 37.7 |
March | 5.2 | 5.7 | 39.1 | 37.0 |
April | 10.3 | 11.8 | 84.0 | 45.2 |
May | 16.9 | 16.9 | 34.9 | 64.1 |
June | 20.6 | 20.7 | 42.8 | 65.4 |
July | 25.6 | 23.2 | 49.0 | 54.1 |
Sum | 113.9 | 100.9 | 529.3 | 487.7 |
Percentage of the sum for multiyears period | 12.7 | 100 | 8.5 | 100 |
Biophysical Variables | Field Campaign | Number of Measurements | Min. Value | Max. Value | Mean | Std. Dev |
---|---|---|---|---|---|---|
LAI [m2 m−2] | 27–28 May 2021 | 103 | 3.71 | 8.57 | 5.32 | 0.72 |
16–17 June 2021 | 102 | 2.89 | 6.54 | 4.38 | 0.95 | |
fAPAR | 27–28 May 2021 | 103 | 0.79 | 0.96 | 0.93 | 0.03 |
16–17 June 2021 | 102 | 0.81 | 0.94 | 0.90 | 0.02 | |
fCover | 27–28 May 2021 | 103 | 0.90 | 0.99 | 0.96 | 0.03 |
16–17 June 2021 | 102 | 0.83 | 0.97 | 0.93 | 0.03 | |
LCC [mg m−2] | 27–28 May 2021 | 103 | 401.50 | 521.50 | 462.61 | 24.76 |
16–17 June 2021 | 102 | 412.50 | 623.50 | 516.60 | 52.60 | |
CCC [g m−2] | 27–28 May 2021 | 103 | 1.71 | 3.67 | 2.46 | 0.34 |
16–17 June 2021 | 102 | 1.29 | 3.71 | 2.29 | 0.63 |
Flight Mission/ID | Flight Date/Time | Phenological Development Stage | Weather Conditions |
---|---|---|---|
Mission 1/M1 | 27 May 2021/11:32 | BBCH 69, BBCH 71 | Clear sky |
Mission 2/M2 | 16 June 2021/12:21 | BBCH 75, BBCH 77 | Cloudy |
Spectral Band | RGB Sensor | Multispectral Sensor | ||
---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | |
Blue | 455 | 90 | ||
Green | 525 | 110 | 550 | 40 |
Red | 635 | 90 | 660 | 40 |
Red-edge | 735 | 10 | ||
Near IR | 790 | 40 |
Biophysical Variables | Min. Value | Max. Value | Mean | Std. Dev |
---|---|---|---|---|
LAI [m2 m−2] | 0.14 | 7.88 | 3.52 | 1.96 |
fAPAR | 0.16 | 0.95 | 0.76 | 0.19 |
fCover | 0.06 | 0.97 | 0.72 | 0.25 |
LCC [mg m−2] | 380.27 | 543.27 | 462.34 | 39.85 |
CCC [g m−2] | 0.06 | 3.22 | 1.63 | 0.88 |
Variable | Model | Cross-Validation | Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | nRMSE (%) | rRMSE (%) | NSE | R2 | RMSE | nRMSE (%) | rRMSE (%) | NSE | ||
LAI [m2 m−2] | GPR | 0.81 | 0.84 | 9.79 | 20.70 | 0.81 | 0.48 ** | 0.64 | 20.19 | 13.51 | 0.47 |
KRR | 0.80 | 0.86 | 10.05 | 21.27 | 0.80 | 0.35 ** | 0.74 | 23.22 | 15.54 | 0.30 | |
RF | 0.75 | 0.95 | 11.08 | 23.44 | 0.75 | 0.19 ** | 0.94 | 29.61 | 19.81 | −0.15 | |
SVR | 0.60 | 1.21 | 14.13 | 29.89 | 0.60 | 0.53 ** | 0.76 | 23.88 | 15.98 | 0.25 | |
PLSR | 0.59 | 1.22 | 14.23 | 30.10 | 0.59 | 0.53 ** | 0.80 | 25.17 | 16.85 | 0.17 | |
fAPAR | GPR | 0.96 | 0.05 | 5.70 | 6.84 | 0.96 | 0.24 ** | 0.03 | 24.02 | 3.10 | 0.10 |
KRR | 0.96 | 0.06 | 6.02 | 7.21 | 0.96 | 0.13 ns | 0.04 | 31.75 | 4.10 | −0.56 | |
RF | 0.89 | 0.09 | 9.70 | 11.64 | 0.89 | 0.02 ns | 0.06 | 53.40 | 6.90 | −3.43 | |
PLSR | 0.77 | 0.13 | 13.89 | 16.65 | 0.77 | 0.11 * | 0.10 | 87.34 | 11.29 | −10.84 | |
SVR | 0.60 | 0.18 | 19.27 | 23.11 | 0.55 | 0.28 ** | 0.06 | 49.49 | 6.40 | −2.80 | |
fCover | GPR | 0.95 | 0.07 | 6.60 | 8.21 | 0.95 | 0.20 * | 0.03 | 20.31 | 3.43 | 0.12 |
KRR | 0.95 | 0.07 | 7.08 | 8.80 | 0.94 | 0.01 ns | 0.05 | 31.93 | 5.39 | −1.18 | |
RF | 0.88 | 0.10 | 10.54 | 13.10 | 0.88 | 0.00 ns | 0.10 | 60.10 | 10.15 | −6.72 | |
SVR | 0.57 | 0.21 | 21.36 | 26.55 | 0.50 | 0.20 ns | 0.07 | 45.50 | 7.69 | −3.42 | |
PLSR | - | - | - | - | - | - | - | - | - | - | |
LCC [mg m−2] | KRR | 0.86 | 53.22 | 8.54 | 12.11 | 0.86 | 0.59 ** | 32.90 | 19.91 | 6.69 | 0.54 |
GPR | 0.83 | 59.29 | 9.51 | 13.49 | 0.82 | 0.62 ** | 31.57 | 19.11 | 6.42 | 0.57 | |
RF | 0.76 | 69.56 | 11.16 | 15.82 | 0.76 | 0.54 ** | 34.02 | 20.59 | 6.92 | 0.50 | |
PLSR | 0.62 | 88.59 | 14.21 | 20.15 | 0.61 | 0.27 ** | 52.98 | 32.06 | 10.77 | −0.20 | |
SVR | 0.59 | 103.21 | 16.55 | 23.48 | 0.47 | 0.45 ** | 47.80 | 0.29 | 9.72 | 0.02 | |
CCC [g m−2] | GPR | 0.77 | 0.45 | 12.10 | 23.03 | 0.77 | 0.36 ** | 0.35 | 18.43 | 15.19 | 0.34 |
KRR | 0.76 | 0.46 | 12.29 | 23.39 | 0.76 | 0.29 ** | 0.39 | 20.44 | 16.85 | 0.19 | |
RF | 0.73 | 0.49 | 13.09 | 24.92 | 0.73 | 0.21 ** | 0.42 | 22.00 | 18.14 | 0.06 | |
SVR | 0.50 | 0.66 | 17.78 | 33.85 | 0.50 | 0.30 ** | 0.47 | 24.49 | 20.19 | −0.16 | |
PLSR | 0.47 | 0.68 | 18.40 | 35.01 | 0.47 | 0.34 ** | 0.46 | 23.88 | 19.69 | −0.10 |
Variable | VI Bands | Function; Parameters | Cross-Validation | Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | nRMSE (%) | rRMSE (%) | NSE | R2 | RMSE | nRMSE (%) | rRMSE (%) | NSE | |||
fAPAR | 3BSI-Wang; Ra = 660; Rb = 550; Rc = 790 | Polynomial; a0 = 4.2688; a1 = 4.3541; a2 = 1.0954 | 0.81 | 0.12 | 12.40 | 14.87 | 0.81 | 0.49 ** | 0.08 | 68.59 | 8.86 | −6.30 |
3BSI-Tian; Ra = 660; Rb = 790; Rc = 735 | Polynomial; a0 = 0.8233; a1 = 3.8009; a2 = 4.1529 | 0.81 | 0.12 | 12.56 | 15.07 | 0.81 | 0.46 ** | 0.09 | 76.81 | 9.93 | −8.16 | |
NDVI; Ra = 790; Rb = 660 | Linear; a = −1.5725; b = −0.5247 | 0.80 | 0.12 | 12.85 | 15.41 | 0.80 | 0.50 ** | 0.09 | 74.76 | 9.66 | −7.67 | |
fCover | 3BSI-Wang; Ra = 660; Rb = 550; Rc = 790 | Polynomial; a0 = 4.4234; a1 = 4.5613; a2 = 1.1581 | 0.71 | 0.16 | 16.04 | 19.95 | 0.72 | 0.35 ** | 0.10 | 64.52 | 10.90 | −7.90 |
3BSI-Tian; Ra = 660; Rb = 790; Rc = 735 | Polynomial; a0 = 0.9765; a1 = 4.3072; a2 = 4.5267 | 0.71 | 0.16 | 16.08 | 19.99 | 0.71 | 0.30 ** | 0.11 | 71.08 | 12.01 | −9.80 | |
NDVI; Ra = 790; Rb = 660 | Linear; a = −1.6057; b = −0.5492 | 0.70 | 0.16 | 16.38 | 20.36 | 0.70 | 0.35 ** | 0.11 | 68.24 | 11.53 | −8.95 |
Phenological Development Stage | Model | Cross-Validation | Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (kg/13.2 m2) | nRMSE (%) | rRMSE (%) | NSE | R2 | RMSE (kg/13.2 m2) | nRMSE (%) | rRMSE (%) | NSE | ||
Flowering | GPR | 0.92 | 0.71 | 6.55 | 8.05 | 0.92 | 0.19 ** | 0.71 | 23.82 | 7.61 | 0.10 |
RFR | 0.91 | 0.74 | 6.80 | 8.36 | 0.91 | 0.26 ** | 0.68 | 22.85 | 7.31 | 0.18 | |
SVR | 0.91 | 0.77 | 7.08 | 8.70 | 0.90 | 0.22 ** | 0.73 | 24.38 | 7.80 | 0.06 | |
KRR | 0.90 | 0.78 | 7.18 | 8.82 | 0.90 | 0.19 ** | 0.70 | 23.53 | 7.52 | 0.13 | |
PLSR | 0.90 | 0.80 | 7.30 | 8.97 | 0.90 | 0.22 ** | 0.71 | 23.90 | 7.64 | 0.10 | |
Grain filling | PLSR | 0.97 | 0.66 | 6.06 | 8.35 | 0.97 | 0.41 ** | 0.64 | 16.53 | 6.72 | 0.36 |
KRR | 0.92 | 0.70 | 6.39 | 7.91 | 0.92 | 0.35 ** | 1.03 | 26.75 | 10.87 | −0.66 | |
GPR | 0.92 | 0.71 | 6.49 | 9.03 | 0.92 | 0.47 ** | 0.62 | 16.12 | 9.70 | 0.40 | |
RFR | 0.92 | 0.71 | 6.53 | 8.08 | 0.92 | 0.38 ** | 0.65 | 16.97 | 6.90 | 0.33 | |
SVR | 0.91 | 0.75 | 6.83 | 8.45 | 0.91 | 0.35 ** | 0.66 | 17.00 | 6.91 | 0.33 |
Phenological Development Stage | VI Bands | Function; Parameters | Cross-Validation | Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (kg/13.2 m2) | nRMSE (%) | rRMSE (%) | NSE | R2 | RMSE (kg/13.2 m2) | nRMSE (%) | rRMSE (%) | NSE | |||
Flowering | 3SBI-Verrelst; Ra = 660; Rb = 550; Rc = 790 | Polynomial; a0 = 6.4017; a1 = 32.3953; a2 = 39.5796 | 0.92 | 0.70 | 6.44 | 7.91 | 0.92 | 0.20 ** | 0.70 | 23.58 | 7.54 | 0.12 |
SR; Ra = 550, Rb = 790 | Polynomial; a0 = 15.1245; a1 = −112.9459; a2 = 203.1625 | 0.92 | 0.71 | 6.47 | 7.95 | 0.92 | 0.16 ** | 0.74 | 24.81 | 7.93 | 0.03 | |
NDVI; Ra = 790, Rb = 660 | Polynomial; a0 = 3.3069, a1 = 20.1921, a2 = 29.4983 | 0.92 | 0.72 | 6.55 | 8.05 | 0.91 | 0.22 ** | 0.69 | 23.17 | 7.41 | 0.15 | |
3BSI-Tian; Ra = 735, Rb = 660; Rc = 550 | Linear; a = 13.8317, b = 2.3347 | 0.91 | 0.74 | 6.80 | 8.36 | 0.91 | 0.16 ** | 0.72 | 24.06 | 7.69 | 0.09 | |
Grain filling | 3BSI-Tian; Ra = 660; Rb = 790; Rc = 550 | Linear a = −12.0784, b = −0.6811 | 0.93 | 0.66 | 6.07 | 7.52 | 0.93 | 0.49 ** | 0.58 | 14.94 | 6.07 | 0.48 |
3BSI-Tian; Ra = 660; Rb = 790; Rc = 735 | Polynomial; a0 = 0.1526, a1 = −2.6965, a2 = 8.6007 | 0.93 | 0.67 | 6.12 | 7.58 | 0.93 | 0.49 ** | 0.58 | 15.04 | 6.11 | 0.47 | |
3BSI-Verrelst; Ra = 660; Rb = 735; Rc = 790 | Polynomial; a0 = 4.0038, a1 = −9.0601, a2 = 4.83 | 0.93 | 0.67 | 6.14 | 7.60 | 0.93 | 0.48 ** | 0.60 | 15.49 | 6.30 | 0.44 | |
NDVI; Ra = 660, Rb = 790 | Linear; a = 3.5866, b = 7.2366 | 0.92 | 0.67 | 6.14 | 7.60 | 0.93 | 0.49 ** | 0.60 | 15.61 | 6.34 | 0.43 |
Trait | Mean | Standard Error of Mean | Min. Value | Max. Value | Coefficient of Variation % |
---|---|---|---|---|---|
LAI05 | 5.2180 | 0.0160 | 4.4040 | 5.5800 | 4.4091 |
LAI06 | 3.7855 | 0.0335 | 2.2470 | 4.6650 | 12.7590 |
LCC05 | 450.3791 | 1.0138 | 395.6820 | 486.7650 | 3.2464 |
LCC06 | 480.4544 | 2.6721 | 360.6070 | 538.3540 | 8.0211 |
GY | 9.4659 | 0.0553 | 5.8300 | 10.9200 | 8.4203 |
T | 3.6077 | 0.0389 | 2.8000 | 4.9000 | 15.5669 |
H | 102.4471 | 0.4486 | 89.0000 | 121.0000 | 6.3148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganeva, D.; Roumenina, E.; Dimitrov, P.; Gikov, A.; Jelev, G.; Dragov, R.; Bozhanova, V.; Taneva, K. Phenotypic Traits Estimation and Preliminary Yield Assessment in Different Phenophases of Wheat Breeding Experiment Based on UAV Multispectral Images. Remote Sens. 2022, 14, 1019. https://doi.org/10.3390/rs14041019
Ganeva D, Roumenina E, Dimitrov P, Gikov A, Jelev G, Dragov R, Bozhanova V, Taneva K. Phenotypic Traits Estimation and Preliminary Yield Assessment in Different Phenophases of Wheat Breeding Experiment Based on UAV Multispectral Images. Remote Sensing. 2022; 14(4):1019. https://doi.org/10.3390/rs14041019
Chicago/Turabian StyleGaneva, Dessislava, Eugenia Roumenina, Petar Dimitrov, Alexander Gikov, Georgi Jelev, Rangel Dragov, Violeta Bozhanova, and Krasimira Taneva. 2022. "Phenotypic Traits Estimation and Preliminary Yield Assessment in Different Phenophases of Wheat Breeding Experiment Based on UAV Multispectral Images" Remote Sensing 14, no. 4: 1019. https://doi.org/10.3390/rs14041019
APA StyleGaneva, D., Roumenina, E., Dimitrov, P., Gikov, A., Jelev, G., Dragov, R., Bozhanova, V., & Taneva, K. (2022). Phenotypic Traits Estimation and Preliminary Yield Assessment in Different Phenophases of Wheat Breeding Experiment Based on UAV Multispectral Images. Remote Sensing, 14(4), 1019. https://doi.org/10.3390/rs14041019