A No-Reference Edge-Preservation Assessment Index for SAR Image Filters under a Bayesian Framework Based on the Ratio Gradient
Abstract
:1. Introduction
2. Method
2.1. Review of the Classical SAR EPC Assessment Indices
2.1.1. Despeckled Image Based Indices
2.1.2. Ratio Image Based Indices
2.2. Ratio Gradient Preservation Index
2.2.1. Motivation
2.2.2. The Ratio Gradient Preservation Index (RGPI)
2.2.3. Refinement of the RGPI
2.2.4. Spatial Correlations of Speckle
3. Result
3.1. Experiments with Simulated SAR Data
3.2. Experiments with Real SAR Datasets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Description | Link |
---|---|
The source codes of the proposed index | https://github.com/ahuyzx/SAR_RGPI, accessed on 15 October 2021 |
The simulated SAR datasets | http://www.grip.unina.it/web-download.html, accessed on 24 April 2016 (Reference [14]) |
The real SAR datasets | https://github.com/ahuyzx/SAR_RGPI, accessed on 15 October 2021 |
The source codes of PPB filter | https://www.charles-deledalle.fr/pages/software.php, accessed on 23 August 2019 (Reference [9]) |
The source codes of SAR-BM3D filter | http://www.grip.unina.it/web-download.html, accessed on 9 March 2015 (Reference [10]) |
References
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Foucher, S.; López-Martínez, C. Analysis, evaluation, and comparison of polarimetric SAR speckle filtering techniques. IEEE Trans. Image Process. 2014, 23, 1751–1764. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, P.; Wu, Y.; Shen, H. A review on recent developments in fully polarimetric SAR image despeckling. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 743–758. [Google Scholar] [CrossRef]
- Achim, A.; Kuruoglu, E.E.; Zerubia, L. SAR image filtering based on the heavy-tailed Rayleigh model. IEEE Trans. Image Process. 2006, 15, 2686–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argenti, F.; Bianchi, T.; Alparone, L. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized gaussian PDF modeling. IEEE Trans. Image Process. 2006, 15, 3385–3399. [Google Scholar] [CrossRef]
- Denis, L.; Tupin, F.; Darbon, J.; Sigelle, M. SAR image regularization with fast approximate discrete minimization. IEEE Trans. Image Process. 2009, 18, 1588–1600. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Woo, H. A new multiplicative denoising variational model based on the root transformation. IEEE Trans. Image Process. 2012, 21, 2523–2533. [Google Scholar]
- Chierchia, G.; Pustelnik, N.; Popescu, B.P.; Pesquet, J. A nonlocal structure tensor-based approach for multicomponent image recovery problems. IEEE Trans. Image Process. 2014, 23, 5531–5544. [Google Scholar] [CrossRef] [Green Version]
- Deledalle, C.A.; Denis, L.; Tupin, F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [Green Version]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Patel, V.M. SAR image despeckling using a convolutional neural network. IEEE Signal Processing Lett. 2017, 24, 1763–1767. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yuan, Q.; Li, J.; Yang, Z.; Ma, X. Learning a dilated residual network for SAR image despeckling. Remote Sens. 2018, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wang, C.; Yin, Z.; Wu, P. SAR image despeckling by noisy reference-based deep learning method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8807–8818. [Google Scholar] [CrossRef]
- Martino, G.D.; Poderico, M.; Poggi, G.; Riccio, D.; Verdoliva, L. Benchmarking framework for SAR despeckling. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1596–1615. [Google Scholar] [CrossRef]
- Deledalle, C.; Denis, L.; Tupin, F.; Reigber, A.; Jäger, M. NL-SAR: A unified Non-Local framework for resolution-preserving (Pol)(In)SAR denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef] [Green Version]
- Sica, F.; Cozzolino, D.; Zhu, X.; Verdoliva, L.; Poggi, G. InSAR-BM3D: A Nonlocal Filter for SAR Interferometric Phase Restoration. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3456–3467. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Deledalle, C.A.; Denis, L.; Maitre, H.; Nicolas, J.M.; Tupin, F. Ratio-based multi-temporal SAR images denoising: RABASAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3552–3565. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Pratt, W.K. Digital Image Processing; Interscience: New York, NY, USA, 1978. [Google Scholar]
- Sattar, F.; Floreby, L.; Salomonsson, G.; Lovstrom, B. Image enhancement based on a nonlinear multiscale method. IEEE Trans. Image Process. 1997, 6, 888–895. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Feng, H.; Hou, B.; Gong, M. SAR image despeckling based on local homogeneous-region segmentation by using pixel-relativity measurement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2724–2737. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Zhang, B.; Hong, W.; Wu, Y. Adaptive total variation regularization based SAR image despeckling and despeckling evaluation index. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2765–2774. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Jurkevich, I.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Yang, X.; Wu, K.; Tang, Y. A new metric for measuring structure-preserving capability of despeckling of SAR images. ISPRS J. Photogramm. Remote Sens. 2014, 94, 143–159. [Google Scholar] [CrossRef]
- Gomez, L.; Buemi, M.E.; Jacobo-Berlles, J.C.; Mejail, M.E. A new image quality index for objectively evaluating despeckling filtering in SAR images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1297–1307. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bousquet, P. A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Remote Sens. 1988, 26, 764–773. [Google Scholar] [CrossRef]
- Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3795–3809. [Google Scholar] [CrossRef]
- Lee, J.S. Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 1981, 15, 380–389. [Google Scholar] [CrossRef]
- Arienzo, A.; Argenti, F.; Alparone, L.; Gherardelli, M. Accurate despeckling and estimation of polarimetric features by means of a spatial decorrelation of the noise in complex PolSAR data. Remote Sens. 2020, 12, 331. [Google Scholar] [CrossRef] [Green Version]
- Dalsasso, E.; Denis, L.; Tupin, F. How to handle spatial correlations in SAR despeckling? Resampling strategies and deep learning approaches. In Proceedings of the 13th European Conference on Synthetic Aperture Radar, Online, 29 March–1 April 2021. [Google Scholar]
- Yu, Y.; Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Trans. Geosci. Remote Sens. 2002, 11, 1260–1270. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Voloume 2; pp. 60–65. [Google Scholar]
- Ma, X.; Shen, H.; Zhao, X.; Zhang, L. SAR image despeckling by the use of variational methods with adaptive nonlocal functionals. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3421–3434. [Google Scholar] [CrossRef]
Need Ratio Image | Need Reference | Need Edge Detector | Range of Values | |
---|---|---|---|---|
FOM | NO | YES | YES | ; 1 is best |
EC | NO | YES | YES | ; 1 is best |
EPD-ROA | NO | NO | NO | ; 1 is best |
DEI | NO | NO | NO | ; 0 is best |
DSL | YES | YES | YES | ; 0 is best |
YES | NO | YES | ; 0 is best |
L = 1 | L = 2 | L = 4 | ||
---|---|---|---|---|
EPD-ROA | SRAD | 0.021 | 0.034 | 0.077 |
PPB | 0.042 | 0.075 | 0.159 | |
SAR-BM3D | 0.037 | 0.053 | 0.144 | |
DEI | SRAD | 0.770 | 0.695 | 0.543 |
PPB | 0.672 | 0.553 | 0.399 | |
SAR-BM3D | 0.611 | 0.522 | 0.371 | |
RGPI | SRAD | −0.823 | −0.442 | −0.300 |
PPB | −0.390 | −0.230 | −0.110 | |
SAR-BM3D | −0.308 | −0.218 | −0.102 |
Pixel Based RGPI | Patch Based RGPI | ||
---|---|---|---|
SRAD | −3.166 | −0.711 | |
PPB | −2.212 | −0.339 | |
SAR-BM3D | −2.001 | −0.282 | |
SRAD | −3.435 | −0.784 | |
PPB | −2.410 | −0.350 | |
SAR-BM3D | −2.300 | −0.332 | |
SRAD | −3.568 | −0.801 | |
PPB | −2.566 | −0.423 | |
SAR-BM3D | −2.603 | −0.411 |
SRAD | PPB (T = 4) | PPB (T = 3) | PPB (T = 2) | SAR-BM3D | |
---|---|---|---|---|---|
EPD-ROA | 0.676 | 0.889 | 0.890 | 0.894 | 0.896 |
DEI | 0.762 | 0.725 | 0.610 | 0.303 | 0.287 |
RGPI | −0.217 | −0.116 | −0.096 | −0.065 | −0.066 |
PPB (S = 7 × 7) | SAR-BM3D (S = 7 × 7) | PPB (S = 5 × 5) | SAR-BM3D (S = 5 × 5) | |
---|---|---|---|---|
EPD-ROA | 0.617 | 0.679 | 0.682 | 0.692 |
DEI | 0.731 | 0.700 | 0.606 | 0.524 |
RGPI | −0.532 | −0.276 | −0.417 | −0.267 |
SRAD | PPB | SAR-BM3D | |
---|---|---|---|
HH polarization (C band) | −0.088 | −0.055 | 0.270 |
HV polarization (C band) | −0.078 | −0.048 | 0.260 |
HH polarization (L band) | −0.143 | −0.017 | 0.307 |
HV polarization (L band) | −0.144 | 0.029 | 0.303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Hu, H.; Wu, P. A No-Reference Edge-Preservation Assessment Index for SAR Image Filters under a Bayesian Framework Based on the Ratio Gradient. Remote Sens. 2022, 14, 856. https://doi.org/10.3390/rs14040856
Ma X, Hu H, Wu P. A No-Reference Edge-Preservation Assessment Index for SAR Image Filters under a Bayesian Framework Based on the Ratio Gradient. Remote Sensing. 2022; 14(4):856. https://doi.org/10.3390/rs14040856
Chicago/Turabian StyleMa, Xiaoshuang, Hongming Hu, and Penghai Wu. 2022. "A No-Reference Edge-Preservation Assessment Index for SAR Image Filters under a Bayesian Framework Based on the Ratio Gradient" Remote Sensing 14, no. 4: 856. https://doi.org/10.3390/rs14040856
APA StyleMa, X., Hu, H., & Wu, P. (2022). A No-Reference Edge-Preservation Assessment Index for SAR Image Filters under a Bayesian Framework Based on the Ratio Gradient. Remote Sensing, 14(4), 856. https://doi.org/10.3390/rs14040856