BDS-3 Integrity Risk Modeling and Probability Evaluation
Abstract
:1. Introduction
2. BDS-3 Integrity Monitoring Architecture
2.1. Integrity Concepts and Indicators
2.2. BDS-3 Integrity Monitoring Method
2.2.1. Ground Integrity Monitoring
2.2.2. Satellite Autonomous Integrity Monitoring
3. BDS-3 Integrity Failure Model and Effect Analysis Algorithm
3.1. IFMEA Procedure
3.2. Anomaly Characteristic Statistical Table Design
3.3. BDS-3 Integrity Risk Factors Analysis
3.3.1. System Anomaly
3.3.2. Anomaly Monitoring Missing Alarm
3.3.3. Integrity Risk Factor Analysis
3.4. BDS-3 Integrity Risk Tree Modeling
3.4.1. Integrity Risk Tree
3.4.2. Integrity Risk Probability Evaluation Method
- During the estimation period, satellites are not reconstructed on-orbit software, i.e., the hardware and software states that cause anomalies are considered relevant and consistent.
- In the next period of time, the hardware related to the space segment and the ground control segment does not run in a super-life state.
- Assume that the system is a stable system, that is, the fault occurrence probability is a constant within a certain time, and an abnormal occurrence is a rare event.
4. Result and Discussion
4.1. Characterization of BDS-3 Signal-In-Space Ranging Errors
4.2. Probabilistic Assessment and Result Analysis of Integrity Risk Based on Actual Data
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.X.; Mao, Y.; Sun, B.J. Basic performance and future developments of BeiDou global navigation satellite system. Satell. Navig. 2020, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Dong, X.; Tao, Y. Analysis on service performance index of Beidou navigation system. Mod. Electron. Tech. 2013, 36, 16–18. [Google Scholar]
- China Satellite Navigation Office. BeiDou Navigation Satellite System Open Service Performance Standard (Version 2.0); China Satellite Navigation Office: Montréal, QC, Canada, 2018.
- Hein, G.W. Status, perspectives and trends of satellite navigation. Satell. Navig. 2020, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- International Civil Aviation Organization (ICAO). Annex 10, Volume I (Radio Navigation Aids), “Aeronautical Telecommunications”, 7th ed.; ICAO: Montréal, QC, Canada, 2018. [Google Scholar]
- Ochieng, W.Y.; Sauer, K.; Walsh, D.; Brodin, G.; Griffin, S.; Denney, M. GPS Integrity and Potential Impact on Aviation Safety. J. Navig. 2003, 56, 51–65. [Google Scholar] [CrossRef]
- Kovach, K.; Dobyne, J.; Crews, M.; Miles, C. GPS III Integrity Concept. In Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation, Savannah, GA, USA, 16–19 September 2008. [Google Scholar]
- Medel, C.H.; Catalán, C.C.; Vidou, M.A.F.; Sardon, E. The Galileo Ground Segment Integrity Algorithms: Design and Performance. Int. J. Navig. Obs. 2008, 2008, 178927. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Chen, J.; Hu, X.; He, F.; Bian, L.; Wang, W.; Wu, B.; Yu, Y.; Wang, J.; Tian, Q. Design of BDS-3 integrity monitoring and preliminary analysis of its performance. Adv. Space Res. 2020, 65, 1125–1138. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, X.; Chen, J.; Bian, L.; Wang, W.; Li, R.; Wang, X.; Rao, Y.; Meng, X.; Wu, B. Initial analysis of the BDS satellite autonomous integrity monitoring capability. GPS Solut. 2019, 23, 35. [Google Scholar] [CrossRef]
- U.S. National Coordination Office for Space-Based Positioning Navigation and Timing. Global Positioning Systems Directorate Systems Engineering & Integration Interface Specification; U.S. National Coordination Office: Washington, DC, USA, 2013.
- European GNSS (GALILEO) Open Service. Signal-In-Space Interface Control Document. 2016. Available online: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-SIS-ICD.pdf (accessed on 2 January 2022).
- Chen, J.; Cao, Y.; Guo, R.; Li, X.; Meng, X. The Calculation Method and Performance Evaluation on SISA of New Generation BDS. Acta Geod. Cartogr. Sin. 2018, 47, 1–8. [Google Scholar]
- Tayntor, C. The Failure Modes and Effects Analysis (FMEA). In Project Management Tools and Techniques for Success; CRC Press: Boca Raton, FL, USA, 2010; pp. 249–252. [Google Scholar]
- Van Dyke, K.; Kovach, K.; Kraemer, J.; Lavrakas, J.; Fernow, J.P.; Reese, J.; Attallah, N.; Baevitz, B. GPS Integrity Failure Modes and Effects Analysis. In Proceedings of the National Technical Meeting of the Institute of Navigation, Anaheim, CA, USA, 22–24 January 2003. [Google Scholar]
- Van Dyke, K.; Kovach, K.; Lavrakas, J.; Carroll, B. Status Update on GPS Integrity Failure Modes and Effects Analysis. In Proceedings of the National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 26–28 January 2004; pp. 92–102. [Google Scholar]
- Brieden, P.; Wallner, S.; Canestri, E.; Joly, D.; Subirana, J.S.; Martini, I.; Nuckelt, A.; Battista, G.; Lauria, D.; Luongo, F.; et al. Galileo Characterization as Input to H-ARAIM and SBAS DFMC. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019. [Google Scholar]
- Du, Y.J.; Wang, J.L.; Rizos, C.; El-Mowafy, A. Vulnerabilities and integrity of PPP for intelligent transport system: Overview and analysis. Satell. Navig. 2021, 2, 3. [Google Scholar] [CrossRef]
- Milner, C.; Macabiau, C.; Thevenon, P. Bayesian Inference of GNSS Failures. J. Navig. 2016, 69, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Walter, T.; Blanch, J.; Joerger, M.; Pervan, B. Determination of Fault Probabilities for ARAIM. In Proceedings of the 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA, 11–14 April 2016. [Google Scholar]
- Jeffireys, H. An Invariant Form for the Prior Probability in Estimation Problems. Proc. R. Soc. Lon. Ser. A Math. Phys. Sci. 1946, 186, 453–461. [Google Scholar]
- Box, G.E.P.; Tiao, G.C. Bayesian Inference in Statistical Analysis; Wiley: Hoboken, NJ, USA, 1973; ISBN 0-471-57428-7. [Google Scholar]
- Chen, G.; Zhou, R.; Hu, Z.; Lv, Y.; Wei, N.; Zhao, Q. Statistical characterization of the signal-in-space errors of the BDS: A comparison between BDS-2 and BDS-3. GPS Solut. 2021, 25, 112. [Google Scholar] [CrossRef]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1I (Version 3.0); CSNO: Beijing, China, 2019.
Index Item | GPS | GLONASS | BDS-3 | Galileo | |
---|---|---|---|---|---|
Alarm limit | SISRE > 4.42 × IAURA | SISRE > 70 m | SISRE > 4.42 × SISA | SISRE > 4.17 × URA | |
Alarm time | 10 s | 10 s | 300 s (10 s) | — | |
Integrity risk probability | Psat | 1E-5 | 1E-4 | 1E-5 | 3E-5 |
Pconst | 1E-8 | 1E-4 | 6E-5 | 2E-5 |
Aberration Identification | |||
---|---|---|---|
Aberration Name: Name Assigned to Aberration | |||
Description: What is the aberration | Segment: Allocation to: Ground Control System Space segment | Cause: What most directly causes the aberration? | |
Aberration Characterization | |||
Effect on signal: Off, nil, ramp, step, noise, sinusoid | Magnitude: M, m/sec, m/sec squared | ||
Detection Means: Use data from measurements | Undetected duration: Time until aberration is detected, and user notified | ||
Aberration Occurrence | |||
Probability of occurrence: Per hour, per day, per year, per SV, per constellation | Undetected Probability: Per hour, per day, per year, per SV, per constellation | ||
Number of Aberration observed: Number of relevant aberrations observed over time | Total observation Time (h): Total observation time used to calculate the measurement onset probabilities | ||
Recommendations | |||
Recommendations developed to improve the robustness of the BDS system |
Section | Anomaly Models | Impact on SISRE | Spatial Correlation | Receiver Detectability |
---|---|---|---|---|
Space segment | Satellite clock anomaly | Step/tilt | No | No |
Satellite attitude anomaly | Inclination | Certain extent | No | |
Signal measurement anomaly | Multiplicity | Certain extent | Yes | |
Abnormal signal power | Noise | Negation | Yes | |
Satellite autonomous integrity parameter broadcast error | Multiplicity | Certain extent | Yes | |
Satellite autonomous integrity not monitored | Multiplicity | No | Certain extent | |
Control segment | Monitoring network data anomalies | Step/tilt/sine curve | Certain extent | No |
Injection anomaly at the upper injection station | Inclination | Certain extent | No | |
Calculation anomaly of orbit/clock difference | Step/tilt/sine curve | Certain extent | No | |
Abnormal calculation of ephemeris fitting parameters | Multiplicity | Certain extent | Most conditions | |
Track and time synchronization processing equipment anomalies | Step/tilt/sine curve | No | No | |
Ground integrity parameter broadcast error | Multiplicity | Certain extent | No | |
Ground integrity not monitored | Multiplicity | No | Yes |
Title 1 | ||
---|---|---|
Uniform | 1 | 0 |
Albert | 0 | 0 |
Jeffrey | 0.5 | 0 |
Confidence Levels | 68% | 95% | 99% | 99.999% | 99.99999% |
---|---|---|---|---|---|
Posterior anomaly number (0 anomalies) | 0.5 | 1.93 | 3.32 | 9.76 | 14.19 |
Posterior anomaly number (1 anomalies) | 1.76 | 3.91 | 5.68 | 12.96 | 17.71 |
Posterior anomaly number (2 anomalies) | 2.94 | 5.54 | 7.55 | 15.43 | 20.44 |
Posterior anomaly number (3 anomalies) | 4.08 | 7.04 | 9.24 | 17.63 | 22.85 |
Bottom Event Name | Number of Historical Occurrences | Predictive Value under 95% Confidence Limit | Probability of Integrity Risk under 95% Confidence Level | |
---|---|---|---|---|
Satellite clock anomaly | 3 | 7.04 | 1.34e-05 | |
Satellite attitude anomaly | 0 | 1.93 | 3.67e-06 | |
Signal measurement anomaly | 7 | 12.5 | 2.37e-05 | |
Signal power anomaly | 1 | 3.91 | 7.43e-06 | |
Monitoring station data anomaly | 1 | 3.91 | 7.43e-06 | |
Injection anomaly of injection station | 0 | 1.93 | 3.67e-06 | |
Calculation anomaly of track/clock offset | 2 | 5.54 | 1.05e-05 | |
Anomaly of ephemeris fitting parameters | 3 | 7.04 | 1.34e-05 | |
Track and time synchronization equipment anomalies | 1 | 3.91 | 7.43e-06 | |
Monitoring miss | SAIM parameter broadcast error | 0 | 1.93 | 3.67e-06 |
Satellite autonomous integrity not monitored | 6 | 11.19 | 2.13e-05 | |
Ground integrity parameter broadcast error | 0 | 1.93 | 3.67e-06 | |
Ground integrity not monitored | 0 | 1.93 | 3.67e-06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Gao, W.; Hu, Z.; Cao, Y.; Pei, L.; Liu, C.; Zhou, W.; Liu, X.; Chen, L.; Yang, R. BDS-3 Integrity Risk Modeling and Probability Evaluation. Remote Sens. 2022, 14, 944. https://doi.org/10.3390/rs14040944
Chen L, Gao W, Hu Z, Cao Y, Pei L, Liu C, Zhou W, Liu X, Chen L, Yang R. BDS-3 Integrity Risk Modeling and Probability Evaluation. Remote Sensing. 2022; 14(4):944. https://doi.org/10.3390/rs14040944
Chicago/Turabian StyleChen, Lei, Weiguang Gao, Zhigang Hu, Yueling Cao, Ling Pei, Cheng Liu, Wei Zhou, Xuanzuo Liu, Liang Chen, and Ronghua Yang. 2022. "BDS-3 Integrity Risk Modeling and Probability Evaluation" Remote Sensing 14, no. 4: 944. https://doi.org/10.3390/rs14040944
APA StyleChen, L., Gao, W., Hu, Z., Cao, Y., Pei, L., Liu, C., Zhou, W., Liu, X., Chen, L., & Yang, R. (2022). BDS-3 Integrity Risk Modeling and Probability Evaluation. Remote Sensing, 14(4), 944. https://doi.org/10.3390/rs14040944