An Improved Next Generation Gravity Mission
Abstract
:1. Introduction
2. Results: Design for Early Next Generation Gravity Mission
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Colombo, O.L.; Chao, B.F. Global Gravity Change in 2001. In Geodesy and Physics of the Earth: Geodetic Contributions to Geodynamics; Reigber, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 71–75. [Google Scholar]
- Bender, P.L. Integrated laser Doppler method for measuring planetary gravity fields. In From Mars to Greenland: Charting Gravity with Space and Airborne Instruments; Colombo, O.L., Ed.; Springer: New York, NY, USA, 1992; pp. 63–72. [Google Scholar]
- McNamara, P.; Vitale, S.; Danzmann, K. LISA Pathfinder. Class. Quantum. Grav. 2008, 25, 114034. [Google Scholar] [CrossRef]
- Alvarez, A.D.; Bevilacqua, R.; Hollis, H.; Mueller, G.; Knudston, A.; Patel, U.; Sanjuan, J.; Wass, P.; Conklin, J.W. A Simplified Gravitational Reference Sensor for Satellite Geodesy. arXiv 2021, arXiv:2107.08545v3. [Google Scholar]
- Conklin, J.; Davila Alvarez, A.; Bennett, S.; Bevilacqua, R.; Doughty, N.; Hollis, H.; Mueller, G.; Knudtson, A.; Leitch, J.; Lee, J.; et al. Simplified Gravitational Reference Sensors for Future Earth Geodesy Missions, Talk 71. In Proceedings of the GRACE Follow-On Science Team Meeting, Virtual Conference, 12–20 October 2021. [Google Scholar]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Bize, M.P.; Bogan, C.; Braxmaier, C.; Burke, M.J.; et al. In-orbit performance of the GRACE Follow-On laser ranging interferometer. Phys. Rev. Lett. 2019, 123, 031101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armano, M.; Audley, H.; Auger, G.; Baird, J.T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; et al. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. Phys. Rev. Lett. 2016, 116, 231101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghobadi-Far, K.; Han, S.C.; Weller, S.; Loomis, B.D.; Luthcke, S.B.; Mayer-Gürr, T.; Behzadpour, S. A transfer function between line-of-sight gravity difference and GRACE intersatellite ranging data, and an application to hydrological surface mass variation. J. Geophys. Res. Solid Earth 2018, 123, 9186–9201. [Google Scholar] [CrossRef]
- Ghobadi-Far, K.; Han, S.C.; Allgeyer, S.; Tregoning, P.; Sauber, J.; Behzadpour, S.; Mayer-Gürr, T.; Sneeuw, N.; Okal, E. GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes. J. Geod. 2020, 94, 65. [Google Scholar] [CrossRef]
- Ghobadi-Far, K.; Han, S.C.; McCullough, C.M.; Wiese, D.N.; Yuan, D.N.; Landerer, F.W.; Sauber, J.; Watkins, M.M. GRACE Follow-On Laser Ranging Interferometer Measurements Uniquely Distinguish Short-Wavelength Gravitational Perturbations. Geophys. Res. Lett. 2020, 47, e2020GL089445. [Google Scholar] [CrossRef]
- Han, S.C.; Ghobadi-Far, K.; Yeo, I.Y.; McCullough, C.M.; Lee, E.; Sauber, J. GRACE Follow-On revealed Bangladesh was flooded early in the 2020 monsoon season due to premature soil saturation. Proc. Natl. Acad. Sci. USA 2021, 118, e2109086118. [Google Scholar] [CrossRef] [PubMed]
- Han, S.C.; Yeo, I.Y.; Khaki, M.; McCullough, C.M.; Lee, E.; Sauber, J. Novel Along-Track Processing of GRACE Follow-On Laser Ranging Measurements Found Abrupt Water Storage Increase and Land Subsidence During the 2021 March Australian Flooding. Earth Space Sci. 2021, 8, e2021EA001941. [Google Scholar] [CrossRef] [PubMed]
- Dobslaw, H.; Bergmann-Wolf, I.; Forootan, E.; Dahle, C.; Mayer-Gürr, T.; Kusche, J.; Flechtner, F. Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations. J. Geod. 2016, 90, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Bender, P.L. Improved Measurements of Short-Period Mass Variations with Future Earth Gravity Missions. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020720. [Google Scholar] [CrossRef]
- Christophe, B.; Foulon, B.; Liorzou, F.; Lebat, V.; Boulanger, D.; Huynh, P.A.; Zahzam, N.; Bidel, Y.; Bresson, A. Status of Development of the Future Accelerometers for Next Generation Gravity Missions. In International Symposium on Advancing Geodesy in a Changing World; Freymueller, J.T., Sánchez, L., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 85–89. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bender, P.L. An Improved Next Generation Gravity Mission. Remote Sens. 2022, 14, 948. https://doi.org/10.3390/rs14040948
Bender PL. An Improved Next Generation Gravity Mission. Remote Sensing. 2022; 14(4):948. https://doi.org/10.3390/rs14040948
Chicago/Turabian StyleBender, Peter L. 2022. "An Improved Next Generation Gravity Mission" Remote Sensing 14, no. 4: 948. https://doi.org/10.3390/rs14040948
APA StyleBender, P. L. (2022). An Improved Next Generation Gravity Mission. Remote Sensing, 14(4), 948. https://doi.org/10.3390/rs14040948