Assessing the Environmental Suitability for Transhumance in Support of Conflict Prevention in the Sahel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Generation of Earth Observation Products
2.3.2. Model Input Layers
2.3.3. Spatial Modelling of Environmental Suitability for Transhumance
2.3.4. Combining Suitability Maps with Transhumance Tracking Tool and Conflict Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ayana, E.K.; Ceccato, P.; Fisher, J.; DeFries, R. Examining the relationship between environmental factors and conflict in pastoralist areas of East Africa. Sci. Total Environ. 2016, 557–558, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Brottem, L.V. Environmental Change and Farmer-Herder Conflict in Agro-Pastoral West Africa. Hum. Ecol. 2016, 44, 547–563. [Google Scholar] [CrossRef]
- Puig Cepero, O.; Desmidt, S.; Detges, A.; Tondel, F.; van Ackern, P.; Foong, A.; Volkholz, J. Climate Change, Development and Security in the Central Sahel. Available online: https://www.cascades.eu/wp-content/uploads/2021/06/Climate-Change-Development-and-Security-in-the-Central-Sahel.pdf (accessed on 19 November 2021).
- Benjaminsen, T.A.; Maganga, F.P.; Abdallah, J.M. The Kilosa Killings: Political Ecology of a Farmer–Herder Conflict in Tanzania. Dev. Chang. 2009, 40, 423–445. [Google Scholar] [CrossRef]
- Cabot, C. Climate Change and Farmer–Herder Conflicts in West Africa. In Climate Change, Security Risks and Conflict Reduction in Africa; Springer: Berlin/Heidelberg, Germany, 2016; pp. 11–44. [Google Scholar] [CrossRef]
- Inter-Resaux. Pastoral Livestock Farmin in Sahel and West Africa: 5 Preconceptions Put to the Test. Available online: https://www.inter-reseaux.org/wp-content/uploads/int-17-broch-pastoralismeuk-bd.pdf (accessed on 9 June 2021).
- Touré, I.; Ickowicz, A.; Wane, A.; Garba, I.; Gerber, P.; Atte, I.; Cesaro, J.-D.; Diop, A.T.; Djibo, S.; Ham, F.; et al. Atlas des Évolutions des Systèmes Pastoraux au Sahel: 1970–2012; United Nations Food and Agriculture Organization of the United Nations (FAO)-Centre for International Cooperation in Agricultural Research for Development (CIRAD): Rome, Italy, 2012; ISBN 978-92-5-107152-6. [Google Scholar]
- Ikhuoso, O.A.; Adegbeye, M.; Elghandour, M.; Mellado, M.; Al-Dobaib, S.; Salem, A. Climate change and agriculture: The competition for limited resources amidst crop farmers-livestock herding conflict in Nigeria—A review. J. Clean. Prod. 2020, 272, 123104. [Google Scholar] [CrossRef]
- Benjaminsen, T.A.; Ba, B. Farmer-herder conflicts, pastoral marginalisation and corruption: A case study from the inland Niger delta of Mali. Geogr. J. 2009, 175, 71–81. [Google Scholar] [CrossRef]
- Krätli, S.; Toulmin, C. Farmer-Herder Conflict in Sub-Saharan Africa? International Institute for Environment and Development (IIED): London, UK, 2020. [Google Scholar]
- Motta, P.; Porphyre, T.; Hamman, S.M.; Morgan, K.L.; Ngwa, V.N.; Tanya, V.N.; Raizman, E.; Handel, I.G.; Bronsvoort, B.M. Cattle transhumance and agropastoral nomadic herding practices in Central Cameroon. BMC Veter. Res. 2018, 14, 214. [Google Scholar] [CrossRef] [Green Version]
- Detges, A. Local conditions of drought-related violence in sub-Saharan Africa. J. Peace Res. 2016, 53, 696–710. [Google Scholar] [CrossRef]
- Shettima, A.G.; Tar, U.A. Farmer-Pastoralist Conflict in West Africa: Exploring the Causes and Consequences. Inf. Soc. Justice 2008, 1, 163–184. [Google Scholar] [CrossRef]
- Scheffran, J.; Link, P.M.; Schilling, J. Climate and Conflict in Africa. In Oxford Research Encyclopedia of Climate Science; Scheffran, J., Link, P.M., Schilling, J., Eds.; Oxford University Press: London, UK, 2019; ISBN 9780190228620. [Google Scholar]
- Adaawen, S.; Rademacher-Schulz, C.; Schraven, B.; Segadlo, N. Drought, migration, and conflict in sub-Saharan Africa: What are the links and policy options? Curr. Dir. Water Scarcity Res. 2019, 2, 15–31. [Google Scholar]
- Mbih, R.A. The politics of farmer–herder conflicts and alternative conflict management in Northwest Cameroon. Afr. Geogr. Rev. 2020, 39, 324–344. [Google Scholar] [CrossRef]
- Wario, H.T.; Roba, H.G.; Kaufmann, B. Shaping the Herders’ “Mental Maps”: Participatory Mapping with Pastoralists’ to Understand Their Grazing Area Differentiation and Characterization. Environ. Manag. 2015, 56, 721–737. [Google Scholar] [CrossRef]
- Mertz, O.; Rasmussen, K.; Rasmussen, L.V. Weather and resource information as tools for dealing with farmer–pastoralist conflicts in the Sahel. Earth Syst. Dyn. 2016, 7, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Guinde, M.; Mahamat, O.; Abdallah, M. The importance of pastoralism in Chad. Bull. de l’OIE 2018, 2018, 1–5. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; Roo, B.D.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2018: Globe. Available online: https://library.wur.nl/WebQuery/wurpubs/580265 (accessed on 21 February 2022).
- UNEP-WCMC; IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM). Available online: www.protectedplanet.net (accessed on 16 June 2021).
- International Organization for Migration. Displacement Tracking Matrix Transhumance Tracking Tool; International Organization for Migration: Geneva, Switzerland, 2021. [Google Scholar]
- Raleigh, C.; Linke, A.; Hegre, H.; Karlsen, J. Introducing ACLED: An Armed Conflict Location and Event Dataset. J. Peace Res. 2010, 47, 651–660. [Google Scholar] [CrossRef]
- Steinbach, S.; Cornish, N.; Franke, J.; Hentze, K.; Strauch, A.; Thonfeld, F.; Zwart, S.J.; Nelson, A. A New Conceptual Framework for Integrating Earth Observation in Large-scale Wetland Management in East Africa. Wetlands 2021, 41, 93. [Google Scholar] [CrossRef]
- Landmann, T.; Eidmann, D.; Cornish, N.; Franke, J.; Siebert, S. Optimizing harmonics from Landsat time series data: The case of mapping rainfed and irrigated agriculture in Zimbabwe. Remote Sens. Lett. 2019, 10, 1038–1046. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Qi, Y.; Dennison, P.E.; Jolly, W.M.; Kropp, R.C.; Brewer, S.C. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass. Remote Sens. Environ. 2014, 150, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.; Dennison, P.; Gardner, M.; Hetzel, Y.; Ustin, S.; Lee, C. Evaluation of the potential of hyperion for fire danger assessment by comparison to the airborne visible/infrared imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1297–1310. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.M.; Hunt, E.R., Jr.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Cooper, A.N.; Bustamante, M.M.C.; Olander, L.P. Ecosystem Structure throughout the Brazilian Amazon from Landsat Observations and Automated Spectral Unmixing. Earth Interact. 2005, 9, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.; Smith, M.; Adams, J. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Franke, J.; Barradas, A.C.; Borges, M.A.; Costa, M.M.; Dias, P.A.; Hoffmann, A.A.; Filho, J.C.O.; Melchiori, A.E.; Siegert, F. Fuel load mapping in the Brazilian Cerrado in support of integrated fire management. Remote Sens. Environ. 2018, 217, 221–232. [Google Scholar] [CrossRef]
- Delcourt, C.; Combee, A.; Izbicki, B.; Mack, M.; Maximov, T.; Petrov, R.; Rogers, B.; Scholten, R.; Shestakova, T.; van Wees, D.; et al. Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests. Remote Sens. 2021, 13, 2311. [Google Scholar] [CrossRef]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System; General Technical Report RMRS-GTR-164-CD; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006.
- Buchhorn, M.; Smets, B.; Bertels, L.; Roo, B.D.; Lesiv, M.; Tsendbazar, N.-E.; Li, L.; Tarko, A. Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015–2019: Product User Manual. Available online: https://land.copernicus.eu/global/products/lc (accessed on 21 February 2022).
- Van Etten, J. RPackage gdistance: Distances and Routes on Geographical Grids. Available online: https://cran.microsoft.com/snapshot/2014-12-09/web/packages/gdistance/vignettes/gdistance.pdf (accessed on 7 October 2021).
- UICN/PACO. Evaluation de L’efficacité de la Gestion des Aires Protégées: Aires Protégées du Tchad. 2008. Available online: https://www.iucn.org/fr/content/evaluation-de-lefficacite-de-la-gestion-des-aires-protegees-parcs-et-reserves-du-tchad (accessed on 21 February 2022).
- World Bank Group. Climate Change Knowledge Portal (CCKP): Current Climate: Climatology: Precipitation data. Available online: https://climateknowledgeportal.worldbank.org/country/chad/climate-data-historical (accessed on 19 November 2021).
- Bailey, D.W.; Trotter, M.G.; Knight, C.W.; Thomas, M.G. Use of GPS tracking collars and accelerometers for rangeland livestock production research1. Transl. Anim. Sci. 2018, 2, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Stabach, J.A.; Cunningham, S.A.; Connette, G.; Mota, J.L.; Reed, D.; Byron, M.; Songer, M.; Wacher, T.; Mertes, K.; Brown, J.L.; et al. Short-term effects of GPS collars on the activity, behavior, and adrenal response of scimitar-horned oryx (Oryx dammah). PLoS ONE 2020, 15, e0221843. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, D.A.; Geaumont, B.; Spiess, J.W. Assessment of a livestock GPS collar based on an open-source datalogger informs best practices for logging intensity. Ecol. Evol. 2018, 8, 5649–5660. [Google Scholar] [CrossRef]
- Feldt, T.; Schlecht, E. Analysis of GPS trajectories to assess spatio-temporal differences in grazing patterns and land use preferences of domestic livestock in southwestern Madagascar. Pastoralism 2016, 6, 5. [Google Scholar] [CrossRef] [Green Version]
Geospatial Products | Time Period | Data Type/Source |
---|---|---|
Surface water occurrence | 2017–2019 | Sentinel-1 |
Farming systems | Static 2019 | Sentinel-2 |
Vegetation greenness | Monthly for 2019 | Sentinel-2 |
Vegetation cover | Monthly for 2019 | Sentinel-2 |
Burned areas | Monthly for 2019 | Sentinel-2 |
Urban areas | Static for 2019 | Copernicus Land Monitoring Service |
Forest type | Static for 2019 | Copernicus Land Monitoring Service |
Protected areas with access restrictions | Static for 2019 | World Database on Protected Areas (WDPA) |
Input Layer Name | Spatial Resolution | From Geospatial Product |
---|---|---|
Distance to water body | 10 m | Surface water occurrence |
Distance to urban areas | 10 m | Urban areas |
Monthly rangeland productivity | 10 m | Vegetation greenness |
Monthly vegetation cover | 10 m | Vegetation cover |
Monthly burned areas | 10 m | Burned areas |
Forest type | 30 m | Forest type |
Agricultural fields | 10 m | Farming systems |
Water | 10 m | Surface water dynamics |
Urban areas | 30 m | Urban areas |
Protected areas with access restrictions | Protected areas with access restrictions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, M.; Landmann, T.; Jusselme, D.; Zambrano, E.; Danzeglocke, J.; Siegert, F.; Franke, J. Assessing the Environmental Suitability for Transhumance in Support of Conflict Prevention in the Sahel. Remote Sens. 2022, 14, 1109. https://doi.org/10.3390/rs14051109
Schwarz M, Landmann T, Jusselme D, Zambrano E, Danzeglocke J, Siegert F, Franke J. Assessing the Environmental Suitability for Transhumance in Support of Conflict Prevention in the Sahel. Remote Sensing. 2022; 14(5):1109. https://doi.org/10.3390/rs14051109
Chicago/Turabian StyleSchwarz, Maximilian, Tobias Landmann, Damien Jusselme, Eduardo Zambrano, Jens Danzeglocke, Florian Siegert, and Jonas Franke. 2022. "Assessing the Environmental Suitability for Transhumance in Support of Conflict Prevention in the Sahel" Remote Sensing 14, no. 5: 1109. https://doi.org/10.3390/rs14051109
APA StyleSchwarz, M., Landmann, T., Jusselme, D., Zambrano, E., Danzeglocke, J., Siegert, F., & Franke, J. (2022). Assessing the Environmental Suitability for Transhumance in Support of Conflict Prevention in the Sahel. Remote Sensing, 14(5), 1109. https://doi.org/10.3390/rs14051109