Distinct Susceptibility Patterns of Active and Relict Landslides Reveal Distinct Triggers: A Case in Northwestern Turkey
Abstract
:1. Introduction
2. Study Area
2.1. Mapping Units
2.2. Landslides
3. Modelling Strategy
Name | Abbreviation | Reference | Usage in the Inventory | |
---|---|---|---|---|
Inactive | Active | |||
Mean slope | Slope | [62] | NL | NL |
SD of slope | Slopeσ | [62] | L | L |
Mean Rainfall | Precipitation | [5] | NL | NL |
Mean peak ground acceleration | PGAμ | [5] | L | L |
Topographic relief | Reliefμ | [35] | L | L |
Elongation of the SU | Elongation | [46] | L | L |
Mean Eastness | ESTμ | [50] | L | L |
Mean Northness | NRTμ | [50] | L | L |
SD of Northness | NRTσ | [50] | L | L |
SD of planar curvature | PLCσ | [63] | L | L |
Mean profile curvature | PRCμ | [63] | L | L |
Mean Relative slope position | RSPμ | [64] | L | L |
SD of Relative slope position | RSPσ | [64] | L | L |
Mean topographic wetness index | TWIμ | [64] | L | L |
SD of topographic wetness index | TWIσ | [64] | L | L |
Mean Stream power index | SPIμ | [65] | L | L |
SD of Stream power index | SPIσ | [65] | L | L |
Mean Distance to Fault | D2Fμ | [15] | L | L |
SD of Distance to Fault | D2Fσ | [15] | L | L |
4. Results
4.1. Distinct Patterns of Explanatory Variables
4.2. Distinct Landslide Triggers
4.3. Distinct Susceptibility Maps
5. Discussion
5.1. Controls and Fate of Active Landslides
5.2. Accuracy of the Active/Inactive Landslide Classification
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hutton, J.X. Theory of the Earth; or an Investigation of the Laws observable in the Composition, Dissolution, and Restoration of Land upon the Globe. Trans. R. Soc. Edinb. 1788, 1, 209–304. [Google Scholar] [CrossRef] [Green Version]
- Lyell, C.; Clowes, W.; Deshayes, G.P.; Murray, J. Principles of Geology. In Being an Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation; John Murray: London, UK, 1830; Volume 1. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic Landslide hazard Assessment at the Basin Scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Subramanian, S.S.; Xu, Q.; Huang, R. Rapidly Evolving Controls of Landslides after a Strong Earthquake and Implications for Hazard Assessments. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Tang, R.; Fan, X.; Scaringi, G.; Xu, Q.; Van Westen, C.J.; Ren, J.; Havenith, H.-B. Distinctive Controls on the Distribution of River-Damming and Non-Damming Landslides Induced by the 2008 Wenchuan Earthquake. Bull. Eng. Geol. Environ. 2018, 78, 4075–4093. [Google Scholar] [CrossRef]
- Orme, A.R. Shifting Paradigms in Geomorphology: The Fate of Research Ideas in an Educational Context. Geomorphology 2002, 47, 325–342. [Google Scholar] [CrossRef]
- Ercanoglu, M.; Gokceoglu, C.; Van Asch, T.W.J. Landslide Susceptibility Zoning of North of Yenice (NW Turkey) by Multivariate Statistical Techniques. Nat. Hazards 2004, 32, 1–23. [Google Scholar] [CrossRef]
- Goudie, A.S. (Ed.) International Association of Geomorphologists Encyclopedia of Geomorphology; Routledge: New York, NY, USA, 2004; ISBN 978-1-134-48275-7. [Google Scholar]
- Saponaro, A.; Pilz, M.; Wieland, M.; Bindi, D.; Moldobekov, B.; Parolai, S. Landslide Susceptibility Analysis in Data-Scarce Regions: The Case of Kyrgyzstan. Bull. Eng. Geol. Environ. 2014, 74, 1117–1136. [Google Scholar] [CrossRef] [Green Version]
- Zêzere, J.; Pereira, S.; Melo, R.; Oliveira, S.; Garcia, R. Mapping Landslide Susceptibility Using Data-Driven Methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef]
- Jones, J.N.; Boulton, S.J.; Bennett, G.L.; Stokes, M.; Whitworth, M.R.Z. Temporal Variations in Landslide Distributions Following Extreme Events: Implications for Landslide Susceptibility Modeling. J. Geophys. Res. Earth Surf. 2021, 126. [Google Scholar] [CrossRef]
- Scaringi, G.; Loche, M. A Thermo-Hydro-Mechanical Approach to Soil Slope Stability under Climate Change. Geomorphology 2022, 401, 108108. [Google Scholar] [CrossRef]
- Domènech, G.; Fan, X.; Scaringi, G.; van Asch, T.W.; Xu, Q.; Huang, R.; Hales, T.C. Modelling the Role of Material Depletion, Grain Coarsening and Revegetation in Debris Flow Occurrences after the 2008 Wenchuan Earthquake. Eng. Geol. 2019, 250, 34–44. [Google Scholar] [CrossRef]
- Lombardo, L.; Mai, P.M. Presenting Logistic Regression-Based Landslide Susceptibility Results. Eng. Geol. 2018, 244, 14–24. [Google Scholar] [CrossRef]
- Loche, M.; Scaringi, G.; Yunus, A.P.; Catani, F.; Tanyaş, H.; Frodella, W.; Fan, X.; Lombardo, L. Surface Temperature Controls the Pattern of Post-Earthquake Landslide Activity. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Duman, T.Y.; Çan, T.; Emre, Ö. 1: 1,500,000 Scaled Turkish Landslide Inventory Map; General Directorate of Mineral Research and Exploration Publication: Ankara, Turkey, 2011; Volume 27. [Google Scholar]
- Glade, T. Establishing the Frequency and Magnitude of Landslide-Triggering Rainstorm Events in New Zealand. Environ. Earth Sci. 1998, 35, 160–174. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Domènech, G.; Yang, F.; Guo, X.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two Multi-Temporal Datasets That Track the Enhanced Landsliding after the 2008 Wenchuan Earthquake. Earth Syst. Sci. Data 2019, 11, 35–55. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.Z.; Chu, H.-J.; Chen, Y.-C.; Ullah, S. Machine Learning in Earthquake- and Typhoon-Triggered Landslide Susceptibility Mapping and Critical Factor Identification. Environ. Earth Sci. 2021, 80, 1–21. [Google Scholar] [CrossRef]
- Steger, S.; Brenning, A.; Bell, R.; Glade, T. The Propagation of Inventory-Based Positional Errors into Statistical Landslide Susceptibility Models. Nat. Hazards Earth Syst. Sci. 2016, 16, 2729–2745. [Google Scholar] [CrossRef] [Green Version]
- Lima, P.; Steger, S.; Glade, T.; Tilch, N.; Schwarz, L.; Kociu, A. Landslide Susceptibility Mapping at National Scale: A First Attempt for Austria. In Advancing Culture of Living with Landslides; Mikos, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 943–951. [Google Scholar] [CrossRef]
- Steger, S.; Kofler, C. Statistical Modeling of Landslides. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 519–546. ISBN 978-0-12-815226-3. [Google Scholar]
- Eeckhaut, M.V.D.; Hervás, J.; Jaedicke, C.; Malet, J.-P.; Montanarella, L.; Nadim, F. Statistical Modelling of Europe-Wide LandSlide Susceptibility Using Limited Landslide Inventory Data. Landslides 2011, 9, 357–369. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Petschko, H.; Bell, R.; Brenning, A.; Glade, T. Landslide Susceptibility Modeling with Generalized Additive Models–Facing the Heterogeneity of Large Regions. Landslides Eng. Slopes Prot. Soc. Improv. Underst. 2012, 1, 769–777. [Google Scholar]
- Das, I.; Stein, A.; Kerle, N.; Dadhwal, V.K. Landslide Susceptibility Mapping along Road Corridors in the Indian Himalayas Using Bayesian Logistic Regression Models. Geomorphology 2012, 179, 116–125. [Google Scholar] [CrossRef]
- Alvioli, M.; Marchesini, I.; Reichenbach, P.; Rossi, M.; Ardizzone, F.; Fiorucci, F.; Guzzetti, F. Automatic Delineation of Geomorphological Slope Units with r.slopeunits v1.0 and Their Optimization for Landslide Susceptibility Modeling. Geosci. Model Dev. 2016, 9, 3975–3991. [Google Scholar] [CrossRef] [Green Version]
- Alvioli, M.; Marchesini, I.; Guzzetti, F. Nation-Wide, General-Purpose Delineation of Geomorphological Slope Units in Italy. PeerJ Prepr. 2018, 6, e27066v1. [Google Scholar]
- Alvioli, M.; Guzzetti, F.; Marchesini, I. Parameter-Free Delineation of Slope Units and Terrain Subdivision of Italy. Geomorphology 2020, 358, 107124. [Google Scholar] [CrossRef]
- Tanyas, H.; Rossi, M.; Alvioli, M.; van Westen, C.J.; Marchesini, I. A Global Slope Unit-Based Method for the Near Real-Time Prediction of Earthquake-Induced Landslides. Geomorphology 2018, 327, 126–146. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Yilmaz, Y. Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Okay, A.I. Geology of Turkey: A Synopsis. Anschnitt 2008, 21, 19–42. [Google Scholar]
- Gorum, T.; Gonencgil, B.; Gokceoglu, C.; Nefeslioglu, H.A. Implementation of Reconstructed Geomorphologic Units in LandSlide Susceptibility Mapping: The Melen Gorge (NW Turkey). Nat. Hazards 2008, 46, 323–351. [Google Scholar] [CrossRef]
- Görüm, T. Tectonic, Topographic and Rock-Type Influences on Large Landslides at the Northern Margin of the Anatolian Plateau. Landslides 2018, 16, 333–346. [Google Scholar] [CrossRef]
- Akbaş, B.; Akdeniz, N.; Aksay, A.; Altun, İ.E.; Balcı, V.; Bilginer, E.; Bilgiç, T.; Duru, M.; Ercan, T.; Gedik, İ.; et al. 1:1.250.000 Scaled Geological Map of Turkey; General Directorate of Mineral Research and Exploration Publication: Ankara, Turkey, 2011. [Google Scholar]
- Geology and Tectonic Evolution of the Pontides. In Regional and Petroleum Geology of the Black Sea and Surrounding Region; American Association of Petroleum Geologists: Tulsa, OK, USA, 1997; pp. 183–226. ISBN 978-0-89181-348-4.
- Okay, A.; Şengör, A.C.; Görür, N. Kinematic History of the Opening of the Black Sea and Its Effect on the Surrounding Regions. Geology 1994, 22, 559–562. [Google Scholar] [CrossRef]
- Duman, T.Y.; Çan, T.; Emre, Ö.; Keçer, M.; Doğan, A.; Ateş, Ş.; Durmaz, S. Landslide Inventory of Northwestern Anatolia, Turkey. Eng. Geol. 2005, 77, 99–114. [Google Scholar] [CrossRef]
- Ulusay, R.; Aydan, Ö.; Kılıc, R. Geotechnical Assessment of the 2005 Kuzulu Landslide (Turkey). Eng. Geol. 2007, 89, 112–128. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Carrara, A. Drainage and Divide Networks Derived from High-Fidelity Digital Terrain Models. In Quantitative Analysis of Mineral and Energy Resources; Chung, C.F., Fabbri, A.G., Sinding-Larsen, R., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 581–597. ISBN 978-94-010-8288-4. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the Quality of Landslide Susceptibility Models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Pokharel, B.; Alvioli, M.; Lim, S. Assessment of Earthquake-Induced Landslide Inventories and Susceptibility Maps Using Slope Unit-Based Logistic Regression and Geospatial Statistics. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Camilo, D.C.; Lombardo, L.; Mai, P.M.; Dou, J.; Huser, R. Handling High Predictor Dimensionality in Slope-Unit-Based Landslide Susceptibility Models through LASSO-Penalized Generalized Linear Model. Environ. Model. Softw. 2017, 97, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P. Optimizing Landslide Susceptibility Zonation: Effects of DEM Spatial Resolution and Slope Unit Delineation on Logistic Regression Models. Geomorphology 2017, 301, 10–20. [Google Scholar] [CrossRef]
- UNESCO Working Party On World Landslide Inventory A Suggested Method for Describing the Activity of a Landslide. Bull. Int. Assoc. Eng. Geol. 1993, 47, 53–57. [CrossRef]
- Lombardo, L.; Cama, M.; Conoscenti, C.; Märker, M.; Rotigliano, E. Binary Logistic Regression Versus Stochastic Gradient Boosted Decision Trees in Assessing Landslide Susceptibility for Multiple-Occurring Landslide Events: Application to the 2009 Storm Event in Messina (Sicily, Southern Italy). Nat. Hazards 2015, 79, 1621–1648. [Google Scholar] [CrossRef]
- Lombardo, L.; Opitz, T.; Huser, R. Point Process-Based Modeling of Multiple Debris Flow Landslides Using INLA: An Application to the 2009 Messina Disaster. Stoch. Hydrol. Hydraul. 2018, 32, 2179–2198. [Google Scholar] [CrossRef] [Green Version]
- Bakka, H.; Rue, H.; Fuglstad, G.; Riebler, A.; Bolin, D.; Illian, J.; Krainski, E.; Simpson, D.; Lindgren, F. Spatial Modeling with R-INLA: A Review. WIREs Comput. Stat. 2018, 10, e1443. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, L.; Tanyas, H.; Nicu, I.C. Spatial Modeling of Multi-Hazard Threat to Cultural Heritage Sites. Eng. Geol. 2020, 277, 105776. [Google Scholar] [CrossRef]
- Lindgren, F.; Rue, H. Bayesian Spatial Modelling with R-INLA. J. Stat. Softw. 2015, 63, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.P. The Problem of Multicollinearity. In Understanding Regression Analysis; Springer: Boston, MA, USA, 1997; pp. 176–180. ISBN 978-0-306-45648-0. [Google Scholar]
- Mela, C.F.; Kopalle, P.K. The Impact of Collinearity on Regression Analysis: The Asymmetric Effect of Negative and Positive Correlations. Appl. Econ. 2002, 34, 667–677. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rossi, M. Landslide Susceptibility Modeling in a Landslide Prone Area in Mazandarn Province, North of Iran: A Comparison between GLM, GAM, MARS, and M-AHP Methods. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2016, 130, 609–633. [Google Scholar] [CrossRef]
- Petschko, H.; Brenning, A.; Bell, R.; Goetz, J.; Glade, T. Assessing the Quality of Landslide Susceptibility Maps–Case Study Lower Austria. Nat. Hazards Earth Syst. Sci. 2014, 14, 95–118. [Google Scholar] [CrossRef] [Green Version]
- Brenning, A. Spatial Prediction Models for Landslide Hazards: Review, Comparison and Evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [Google Scholar] [CrossRef]
- Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard, N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N.; et al. Spatial Validation Reveals Poor Predictive Performance of Large-Scale Ecological Mapping Models. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Block CV: An r Package for Generating Spatially or Environmentally Separated Folds for k -Fold Cross-Validation of Species Distribution Models. Methods Ecol. Evol. 2018, 10, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Wadoux, A.M.-C.; Heuvelink, G.B.; de Bruin, S.; Brus, D.J. Spatial Cross-Validation Is Not the Right Way to Evaluate Map Accuracy. Ecol. Model. 2021, 457, 109692. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landforms 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Heerdegen, R.G.; Beran, M.A. Quantifying Source Areas through Land Surface Curvature and Shape. J. Hydrol. 1982, 57, 359–373. [Google Scholar] [CrossRef]
- Böhner, J.; Selige, T. Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In SAGA—Analyses and Modelling Applications; Böhner, J., McCloy, K.R., Strobl, J., Eds.; Göttinger Geographische Abhandlungen: Göttingen, Germany, 2006; Volume 115, pp. 13–28. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and Death of Slow-Moving Landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Tanyaş, H.; Kirschbaum, D.; Görüm, T.; van Westen, C.J.; Lombardo, L. New Insight into Post-seismic Landslide Evolution Processes in the Tropics. Front. Earth Sci. 2021, 9, 700546. [Google Scholar] [CrossRef]
- Lombardo, L.; Bakka, H.; Tanyas, H.; Van Westen, C.; Mai, P.M.; Huser, R. Geostatistical Modeling to Capture Seismic-Shaking Patterns from Earthquake-Induced Landslides. J. Geophys. Res. Earth Surf. 2019, 124, 1958–1980. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loche, M.; Lombardo, L.; Gorum, T.; Tanyas, H.; Scaringi, G. Distinct Susceptibility Patterns of Active and Relict Landslides Reveal Distinct Triggers: A Case in Northwestern Turkey. Remote Sens. 2022, 14, 1321. https://doi.org/10.3390/rs14061321
Loche M, Lombardo L, Gorum T, Tanyas H, Scaringi G. Distinct Susceptibility Patterns of Active and Relict Landslides Reveal Distinct Triggers: A Case in Northwestern Turkey. Remote Sensing. 2022; 14(6):1321. https://doi.org/10.3390/rs14061321
Chicago/Turabian StyleLoche, Marco, Luigi Lombardo, Tolga Gorum, Hakan Tanyas, and Gianvito Scaringi. 2022. "Distinct Susceptibility Patterns of Active and Relict Landslides Reveal Distinct Triggers: A Case in Northwestern Turkey" Remote Sensing 14, no. 6: 1321. https://doi.org/10.3390/rs14061321
APA StyleLoche, M., Lombardo, L., Gorum, T., Tanyas, H., & Scaringi, G. (2022). Distinct Susceptibility Patterns of Active and Relict Landslides Reveal Distinct Triggers: A Case in Northwestern Turkey. Remote Sensing, 14(6), 1321. https://doi.org/10.3390/rs14061321