GNSS-IR Snow Depth Retrieval Based on the Fusion of Multi-Satellite SNR Data by the BP Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. GNSS-IR Snow Depth Retrieval Principle
2.2. BP Neural Network
2.3. Data Source
3. Experiment and Results
3.1. Experimental Technical Scheme
3.2. Snow Depth Extraction
3.3. Multi-Satellite Data Fusion
3.4. Experiment Results
3.4.1. Single-Satellite Snow Depth Retrieval Results
3.4.2. Multi-Satellite Snow Depth Retrieval Results
4. Discussion
5. Conclusions
- The snow depth retrieval results according to data sets collected in different periods during the experiment showed great fluctuations. Therefore, it is hard to guarantee the accuracy of snow depth retrieval results by using data obtained from a single GNSS satellite.
- The retrieval results have reached an accuracy of 7 cm, and the correlation has also been greatly improved, which is better than the traditional single-satellite retrieval method.
- Compared with related models, i.e., multiple linear regression model, random forest model, and mean fusion model, the retrieving accuracy and reliability of the BP neural network are optimal. The statistical analysis indicated that the correlation between the retrieval results and the in-situ data reaches 0.94, and the RMSE is less than 3 cm.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, J.; Deng, P.; Zhang, B.; Liu, J.; Ai, S.; Wang, Z.; Yu, Q. Snow Depth Variations in Svalbard Derived from GNSS Interferometric Reflectometry. Remote Sens. 2020, 12, 3352. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Larson, K.M.; Williams, M.W.; Nievinski, F.G.; Zavorotny, V. Snow measurement by GPS interferometric reflectometry: An evaluation at Niwot Ridge, Colorado. Hydrol. Processes 2012, 26, 2951–2961. [Google Scholar] [CrossRef]
- Larson, K.M. GPS interferometric reflectometry: Applications to surface soil moisture, snow depth, and vegetation water content in the western United States. Wiley Interdiscip. Rev. Water 2016, 3, 775–787. [Google Scholar] [CrossRef]
- Larson, K.M.; Ray, R.D.; Williams, S.D.P. A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver versus a Conventional Tide Gauge. J. Atmos. Ocean. Technol. 2017, 34, 295–307. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.D.; Bilich, A.L.; Braun, J.J.; Zavorotny, V.U. Use of GPS receivers as a soil moisture network for water cycle studies. Geosic. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Larson, K.M. Inverse Modeling of GPS Multipath for Snow Depth Estimation-Part I: Formulation and Simulations. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6555–6563. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Larson, K.M. Inverse Modeling of GPS Multipath for Snow Depth Estimation-Part II: Application and Validation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6564–6573. [Google Scholar] [CrossRef]
- Roussel, N.; Ramillien, G.; Frappart, F.; Darrozes, J.; Gay, A.; Biancale, R.; Striebig, N.; Hanquiez, V.; Bertin, X.; Allain, D. Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sens. Environ. 2015, 171, 261–277. [Google Scholar] [CrossRef]
- Wan, W.; Larson, K.M.; Small, E.E.; Chew, C.C.; Braun, J.J. Using geodetic GPS receivers to measure vegetation water content. GPS Solut. 2015, 19, 237–248. [Google Scholar] [CrossRef]
- Larson, K.M.; Gutmann, E.D.; Zavorotny, V.U.; Braun, J.J.; Williams, M.W.; Nievinski, F.G. Can we measure snow depth with GPS receivers? Geophys. Res. Lett. 2009, 36, 876–880. [Google Scholar] [CrossRef]
- Larson, K.M.; Nievinski, F.G. GPS snow sensing: Results from the EarthScope Plate Boundary Observatory. GPS Solut. 2012, 17, 41–52. [Google Scholar] [CrossRef]
- Ozeki, M.; Heki, K. GPS snow depth meter with geometry-free linear combinations of carrier phases. J. Geod. 2011, 86, 209–219. [Google Scholar] [CrossRef]
- Tabibi, S.; Nievinski, F.G.; van Dam, T.; Monico, J.F. Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications. Adv. Space Res. 2015, 55, 1104–1116. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Zhang, Q. Avoiding errors attributable to topography in GPS-IR snow depth retrievals. Adv. Space Res. 2017, 59, 1663–1669. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Zhao, Y.; Li, H.; Liu, Q.; Pang, X. Snow depth estimation based on GNSS-IR cluster analysis. Meas. Sci. Technol. 2021, 32, 095801. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Wang, L.; He, X.; Zhang, Q. Analysis and combination of multi-GNSS snow depth retrievals in multipath reflectometry. GPS Solut. 2020, 24, 77. [Google Scholar] [CrossRef]
- Pan, D.; Zemin, W.; Jiachun, A.N.; Xin, Z.; Qiuze, Y.; Wei, S. An Improved Snow Depth Extraction Method Based on Wavelet Decomposition Using GNSS-R Signals. Geomat. Inf. Sci. Wuhan Univ. 2020, 46, 863–870. [Google Scholar] [CrossRef]
- Li, Z.; Chen, P.; Zheng, N.; Liu, H. Accuracy analysis of GNSS-IR snow depth inversion algorithms. Adv. Space Res. 2021, 67, 1317–1332. [Google Scholar] [CrossRef]
- Zemin, W.; Zhikang, L.; Jiachun, A.N.; Guobiao, L. Snow Depth Detection and Error Analysis Derived from SNR of GPS and BDS. Acta Geod. Cartogr. Sin. 2018, 47, 8. [Google Scholar] [CrossRef]
- Zhigang, Z.; Yueji, L.; Chao, R.; Yibang, H.; Yalong, P.; Lyu, Z.; Xianjian, S. Research on estimation of snow depth inversion model using GPS-IR. Sci. Surv. Mapp. 2020. [Google Scholar] [CrossRef]
- Shuangcheng, Z.; Kaiyang, D.; Yang, N.; Qin, Z.; Wei, Q.; Zhenyu, L.; Yinghui, Z. Preliminary Research on GNSS-MR for Snow Depth. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 11. [Google Scholar]
- Larson, K.M.; Small, E.E. Estimation of Snow Depth Using L1 GPS Signal-to-Noise Ratio Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 4802–4808. [Google Scholar] [CrossRef]
- Yi, L.; Yi, L.; Chao, R.; Zhigang, Z.; Yueji, L.; Yalong, P. Research on GPS-IR Snow Depth Inversion based on Multiple Linear Regression. Remote Sens. Technol. Appl. 2020. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, R.; Tu, J.; Liao, M.; Pang, J.; Yu, B.; Li, K.; Xiang, W.; Fu, Y.; Liu, G. A GNSS-IR Method for Retrieving Soil Moisture Content from Integrated Multi-Satellite Data that Accounts for the Impact of Vegetation Moisture Content. Remote Sens. 2021, 13, 2442. [Google Scholar] [CrossRef]
- Bilich, A.; Larson, K.M.; Axelrad, P. Observations of Signal-to-Noise Ratios (SNR) at Geodetic GPS Site CASA: Implications for Phase Multipath. Proc. Cent. Eur. Geodyn. Seismol. 2004, 23, 77–83. [Google Scholar]
- Yu, K.; Li, Y.; Jin, T.; Chang, X.; Wang, Q.; Li, J. GNSS-R-Based Snow Water Equivalent Estimation with Empirical Modeling and Enhanced SNR-Based Snow Depth Estimation. Remote Sens. 2020, 12, 3905. [Google Scholar] [CrossRef]
- Wei, H.; He, X.; Feng, Y.; Jin, S.; Shen, F. Snow Depth Estimation on Slopes Using GPS-Interferometric Reflectometry. Sensors 2019, 19, 4994. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Su, C.; Yu, J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36, 153–162. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Sun, T.; Xu, B. A constrained optimization method based on BP neural network. Neural Comput. Appl. 2016, 29, 413–421. [Google Scholar] [CrossRef]
- Pan, H.; Yang, J.; Shi, Y.; Li, T. BP Neural Network Application Model of Predicting the Apple Hardness. J. Comput. Theor. Nanosci. 2015, 12, 2802–2807. [Google Scholar] [CrossRef]
PRN | RMSE/m | MAE/m | R |
---|---|---|---|
2 | 0.1484 | 0.1335 | 0.4579 |
15 | 0.1022 | 0.0906 | 0.6385 |
21 | 0.0622 | 0.00500 | 0.7078 |
27 | 0.0514 | 0.0355 | 0.8220 |
Method | R | RMSE/m | MAE/m |
---|---|---|---|
Random Forest | 0.8710 | 0.0669 | 0.0542 |
MLR | 0.8479 | 0.0498 | 0.0372 |
Mean Fusion | 0.9276 | 0.0376 | 0.0329 |
BP Neural Network | 0.9407 | 0.0297 | 0.0219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, J.; Zhang, R.; Tu, J.; Lv, J.; Bao, X.; Xie, L.; Li, S.; Zhan, R. GNSS-IR Snow Depth Retrieval Based on the Fusion of Multi-Satellite SNR Data by the BP Neural Network. Remote Sens. 2022, 14, 1395. https://doi.org/10.3390/rs14061395
Zhan J, Zhang R, Tu J, Lv J, Bao X, Xie L, Li S, Zhan R. GNSS-IR Snow Depth Retrieval Based on the Fusion of Multi-Satellite SNR Data by the BP Neural Network. Remote Sensing. 2022; 14(6):1395. https://doi.org/10.3390/rs14061395
Chicago/Turabian StyleZhan, Junyu, Rui Zhang, Jinsheng Tu, Jichao Lv, Xin Bao, Lingxiao Xie, Song Li, and Runqing Zhan. 2022. "GNSS-IR Snow Depth Retrieval Based on the Fusion of Multi-Satellite SNR Data by the BP Neural Network" Remote Sensing 14, no. 6: 1395. https://doi.org/10.3390/rs14061395
APA StyleZhan, J., Zhang, R., Tu, J., Lv, J., Bao, X., Xie, L., Li, S., & Zhan, R. (2022). GNSS-IR Snow Depth Retrieval Based on the Fusion of Multi-Satellite SNR Data by the BP Neural Network. Remote Sensing, 14(6), 1395. https://doi.org/10.3390/rs14061395