Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest
2.2. Data
2.3. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOC | Department of Conservation |
EBI | Enhanced Bloom Index |
ESA | European Space Agency |
EVI | Enhanced Vegetation Index |
GRVI | Green-Red Vegetation Index |
NDVI | Normalized Difference Vegetation Index |
NDYI | Normalized Difference Yellowing Index |
NZTM | New Zealand Transverse Mercator |
TOA | Top of Atmosphere |
References
- Heenan, P.B.; Smissen, R.D. Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 2013, 146, 1–31. [Google Scholar] [CrossRef]
- Shepherd, J.R.D.; Ausseil, A.G.; Dymond, J.R. EcoSat Forests: A 1: 750,000 Scale Map of Indigenous Forest Classes in New Zealand; Manaaki Whenua Press: Lincoln, New Zealand, 2005. [Google Scholar]
- Wardle, J.A. The New Zealand Beeches. Ecology, Utilisation and Management; New Zealand Forest Service: Wellington, New Zelaand, 1984; p. 477.
- Elliott, G.; Kemp, J. Large-scale pest control in New Zealand beech forests. Ecol. Manag. Restor. 2016, 17, 200–209. [Google Scholar] [CrossRef]
- Ruscoe, W.A.; Pech, R.P. Rodent Outbreaks: Ecology and Impacts. In Rodent Outbreaks: Ecology and Impacts; Singleton, G., Belmain, S., Brown, P., Hardy, B., Eds.; Internationl Rice Research Institute: Los Baños, Philippines, 2010; pp. 239–251. [Google Scholar]
- King, C.M.; Powell, R.A. Managing an invasive predator pre-adapted to a pulsed resource: A model of stoat (Mustela erminea) irruptions in New Zealand beech forests. Biol. Invasions 2011, 13, 3039–3055. [Google Scholar] [CrossRef]
- Kelly, D.; Geldenhuis, A.; James, A.; Penelope Holland, E.; Plank, M.J.; Brockie, R.E.; Cowan, P.E.; Harper, G.A.; Lee, W.G.; Maitland, M.J.; et al. Of mast and mean: Differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 2013, 16, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.B.; Hurst, J.M.; Portier, J.; Richardson, S.J. Elevation-dependent responses of tree mast seeding to climate change over 45 years. Ecol. Evol. 2014, 4, 3525–3537. [Google Scholar] [CrossRef] [PubMed]
- Bogdziewicz, M.; Kelly, D.; Thomas, P.A.; Lageard, J.G.; Hacket-Pain, A. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nat. Plants 2020, 6, 88–94. [Google Scholar] [CrossRef]
- Bogdziewicz, M.; Hacket-Pain, A.; Kelly, D.; Thomas, P.A.; Lageard, J.; Tanentzap, A.J. Climate warming causes mast seeding to break down by reducing sensitivity to weather cues. Glob. Chang. Biol. 2021, 27, 1952–1961. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of phenological research using sentinel-2 data: A review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. Remote Sensing of Environment A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Dixon, D.J.; Callow, J.N.; Duncan, J.M.; Setterfield, S.A.; Pauli, N. Satellite prediction of forest flowering phenology. Remote Sens. Environ. 2021, 255, 112197. [Google Scholar] [CrossRef]
- Moon, M.; Seyednasrollah, B.; Richardson, A.D.; Friedl, M.A. Using time series of MODIS land surface phenology to model temperature and photoperiod controls on spring greenup in North American deciduous forests. Remote Sens. Environ. 2021, 260, 112466. [Google Scholar] [CrossRef]
- Moon, M.; Richardson, A.D.; Friedl, M.A. Multiscale assessment of land surface phenology from harmonized Landsat 8 and Sentinel-2, PlanetScope, and PhenoCam imagery. Remote Sens. Environ. 2021, 266, 112716. [Google Scholar] [CrossRef]
- Browning, D.M.; Russell, E.S.; Ponce-Campos, G.E.; Kaplan, N.; Richardson, A.D.; Seyednasrollah, B.; Spiegal, S.; Saliendra, N.; Alfieri, J.G.; Baker, J.; et al. Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework. Ecol. Indic. 2021, 131, 108147. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Garbulsky, M.; Peñuelas, J.; Peguero, G.; Espelta, J.M. Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecol. 2015, 216, 1061–1072. [Google Scholar] [CrossRef]
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Garcia, M.; Zuckerberg, B.; Lamontagne, J.M.; Townsend, P.A. Landsat-based detection of mast events in white spruce (Picea glauca) forests. Remote Sens. Environ. 2021, 254, 112278. [Google Scholar] [CrossRef]
- Noumonvi, K.D.; Oblišar, G.; Žust, A.; Vilhar, U. Empirical approach for modelling tree phenology in mixed forests using remote sensing. Remote Sens. 2021, 13, 3015. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Panuju, D.R.; Paull, D.J.; Griffin, A.L. Change detection techniques based on multispectral images for investigating land cover dynamics. Remote Sens. 2020, 12, 1781. [Google Scholar] [CrossRef]
- Chen, B.; Jin, Y.; Brown, P. An enhanced bloom index for quantifying floral phenology using multi-scale remote sensing observations. ISPRS J. Photogramm. Remote Sens. 2019, 156, 108–120. [Google Scholar] [CrossRef]
- Dymond, J.R.; Shepherd, J.R.D. The spatial distribution of indigenous forest and its composition in the Wellington region, New Zealand, from ETM+ satellite imagery. Remote Sens. Environ. 2004, 90, 116–125. [Google Scholar] [CrossRef]
- Landcare Research Ltd. EcoSat Forests (North Island); Landcare Research Ltd.: Lincoln, New Zealand, 2014. [Google Scholar] [CrossRef]
- Landcare Research Ltd. EcoSat Forest (South Island); Landcare Research Ltd.: Lincoln, New Zealand, 2014. [Google Scholar] [CrossRef]
- Department of Conservation. Flowering and Fruit Production; Department of Conservation: Wellington, New Zealand, 2019.
- Department of Conservation. Department of Conservation Te Papa Atawhai Annual Report 2019; Technical Report; Department of Conservation: Wellington, New Zealand, 2019.
- Shepherd, J.R.D.; Schindler, J.; Dymond, J.R. Automated Mosaicking of Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 3680. [Google Scholar] [CrossRef]
- Rouse, W.; Haas, H.; Deering, W. Monitoring vegetation systems in the Great Plains with ERTS. In Goddard Space Flight Center 3d ERTS-1 Symposium; NASA: Greenbelt, MD, USA, 1974. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Shepherd, J.R.D.; Dymond, J.R.; Cuff, J.R. Monitoring scrub weed change in the Canterbury region using satellite imagery. N. Z. Plant Prot. 2007, 60, 137–140. [Google Scholar] [CrossRef]
- Card, D.H. Using Known Map Category Marginal Frequencies to Improve Estimates of Thematic Map Accuracy. Photgrammetric Eng. Remote Sens. 1982, 48, 431–439. [Google Scholar]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 1: Literature review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
- Uscoe, W.E.A.R.; Latt, K.E.H.P.; Richardson, S.J.; Allen, R.B.; Whitehead, D.; Carswell, F.E.; Ruscoe, W.A.; Platt, K.H. Climate and net carbon availability determine temporal patterns of seed production by Nothofagus. Ecology 2005, 86, 972–981. [Google Scholar]
- Thapa, S.; Millan, V.E.G.; Eklundh, L. Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, phenocam) and satellite (MODIS, sentinel-2) remote sensing. Remote Sens. 2021, 13, 1597. [Google Scholar] [CrossRef]
- Peng, D.; Wang, Y.; Xian, G.; Huete, A.R.; Huang, W.; Shen, M.; Wang, F.; Yu, L.; Liu, L.; Xie, Q.; et al. Investigation of land surface phenology detections in shrublands using multiple scale satellite data. Remote Sens. Environ. 2021, 252, 112133. [Google Scholar] [CrossRef]
Reference Flowering | ||||
---|---|---|---|---|
Detected | Not Det. | Precision | ||
Mapped flowering | Detected | 0.316 | 0.034 | 0.904 |
Not Det. | 0.059 | 0.592 | 0.910 | |
Recall | 0.844 | 0.946 | ||
F1-Score | 0.873 | 0.928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jolly, B.; Dymond, J.R.; Shepherd, J.D.; Greene, T.; Schindler, J. Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. Remote Sens. 2022, 14, 1573. https://doi.org/10.3390/rs14071573
Jolly B, Dymond JR, Shepherd JD, Greene T, Schindler J. Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. Remote Sensing. 2022; 14(7):1573. https://doi.org/10.3390/rs14071573
Chicago/Turabian StyleJolly, Ben, John R. Dymond, James D. Shepherd, Terry Greene, and Jan Schindler. 2022. "Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery" Remote Sensing 14, no. 7: 1573. https://doi.org/10.3390/rs14071573
APA StyleJolly, B., Dymond, J. R., Shepherd, J. D., Greene, T., & Schindler, J. (2022). Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. Remote Sensing, 14(7), 1573. https://doi.org/10.3390/rs14071573