Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- (1)
- Land use data. The global LULC (land use/land cover) product (GlobeLand30, with aspatial resolution of 30 m, http://globeland30.org/home_en.html, accessed on 30 October 2021), was developed by China to the United Nations with extensive use. The images for land cover classification of development and update of GlobeLand30 [37] include TM5 ETM+, OLI multispectral images of Landsat 8 (USGS) and HJ-1 (China Environment and Disaster Reduction Satellite). What is more, the 16 m resolution GF-1(China High Resolution Satellite) multispectral image was also used for GlobeLand30 2020. The total accuracy of GlobeLand30 2010 and 2020 is 83.50% and 85.72%, respectively, and the kappa coefficient is 0.78 and 0.82 [38,39,40]. The results were both from the validation of over 150,000 points. The existing data of 2000, 2010 and 2020 effectively reflect the overall changes of global land use and landscape pattern during the past 20 years. The images include 6 first-level categories and 26 s-level categories. After merging and reclassifying the data from 2010 and 2020, the land use was divided into six categories within Beijing: cropland, forest, grassland, wetland, water body, impervious surface and bare area. Planning constraints data used in this study was Open Street Map (OSM, https://www.openstreetmap.org, accessed on 30 October 2021) data in 2020 and based on this data, the natural reserves, scenic spots, historical sites, religious sites, reservoirs, dams, major urban parks and other areas in the region were screened out by ArcMap. The development zone was derived from the centralized construction area in “The Master Plan of Beijing (2016–2035)”.
- (2)
- Vegetation net primary productivity data. The MOD17A3HGF NPP products [42] came from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) which is a satellite-based sensor used for earth and climate measurements. MODIS data and products acquired through the LP DAAC. The temporal resolution is 1 year, and the spatial resolution is 500 m. The MOD17A3HGF is derived from the sum of all 8-day net photosynthesis (PSN) products (MOD17A2H). The PSN value is the difference of the Gross Primary Productivity (GPP) and the Maintenance Respiration (MR). We cut and mosaicked the band of NPP from 2000 to 2020 and the pixel value is multiplied by the scale factor of 0.0001 to obtain the annual real value of NPP.
2.3. Methodology
2.3.1. The PLUS Model and Accuracy Verification
2.3.2. Theil-Sen Median Trend Analysis and Mann–Kendall Test
2.3.3. Rescaled Rang Analysis (R/S Analysis) and Hurst Index Method
2.3.4. Hot Spot Analysis
3. Results
3.1. Future Spatial-Temporal Land Use Changes in Beijing
3.2. Temporal and Spatial Evolution of Vegetation Net Primary Productivity
3.2.1. Temporal Variation Characteristic
3.2.2. Spatial Variation Characteristic
3.2.3. Future Trend
3.3. Analysis of Land Use Change Composition of NPP in Cold and Hot Spot Areas
4. Discussion
4.1. Spatial Development Plan
4.2. Review of Land-Use Simulation Results
4.3. Effect on Vegetation Net Primary Productivity (NPP)
4.4. Limitations and Future Work
5. Conclusions
- (1)
- From 2000 to 2030, the main land use type in Beijing is forest whose proportion has been increasing. The future land use change will focus on cropland and impervious surface. Among the three scenarios, the cropland protection scenario is the only scenario in which cropland will not be transformed into impervious surface in a large area; the ecological protection scenario has good protection for forest land, wetland and water body, and the area basically does not change; in the baseline scenario, the land use change is the largest, and the area of impervious surface increases the most.
- (2)
- NPP of vegetation fluctuated and increased from 2000 to 2020 and the rising area accounted for 86.77% of the total area. The future change of the vegetation NPP showed a rise trend on the whole (rise areas and continuous rise areas account for 0.04% and 84.76%, respectively). The NPP of Beijing showed a strong improvement trend and will maintain.
- (3)
- The main land types in the hot spot areas of vegetation NPP are forest and grassland, and the main transformation of land use types is from grassland to forest. The cold spot areas are mainly concentrated in the periphery of urban areas and water areas.
- (4)
- The NPP increases occurred in highly developed urban zones with the growth of green land and the right ecological management and urban planning.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, T.; Dressler, G.; Tucker, C.J.; Pinzon, J.E.; Leimgruber, P.; Dubayah, R.O.; Hurtt, G.C.; Böhning-Gaese, K.; Fagan, W.F. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 2014, 6, 5717–5731. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Ricketts, T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ. 2004, 89, 434–443. [Google Scholar] [CrossRef]
- Pei, F.; Li, X.; Liu, X.; Wang, S.; He, Z. Assessing the differences in net primary productivity between pre-and post-urban land development in China. Agric. For. Meteorol. 2013, 171, 174–186. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.; Kim, S.H.; Lee, E.J. Long-Term Land Cover Changes in the Western Part of the Korean Demilitarized Zone. Land 2021, 10, 708. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Gao, R.; Luo, Y.; Liu, T. Predicted NPP spatiotemporal variations in a semiarid steppe watershed for historical and trending climates. J. Arid Environ. 2014, 104, 67–79. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Wu, J. Decoupling Relationship between Urbanization and Carbon Sequestration in the Pearl River Delta from 2000 to 2020. Remote Sens. 2022, 14, 526. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, A.N.; De Almeida, A.C.; Coelho, C.O. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Yan, M.; Xue, M.; Zhang, L.; Tian, X.; Chen, B.; Dong, Y. A Decade’s Change in Vegetation Productivity and Its Response to Climate Change over Northeast China. Plants 2021, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Ichii, K.; Hashimoto, H.; Nemani, R.; White, M. Modeling the interannual variability and trends in gross and net primary productivity of tropical forests from 1982 to 1999. Glob. Planet. Change 2005, 48, 274–286. [Google Scholar] [CrossRef]
- Liu, L.; Peng, S.; AghaKouchak, A.; Huang, Y.; Li, Y.; Qin, D.; Xie, A.; Li, S. Broad consistency between satellite and vegetation model estimates of net primary productivity across global and regional scales. J. Geophys. Res. Biogeosci. 2018, 123, 3603–3616. [Google Scholar] [CrossRef]
- Rong, T.; Long, L.H. Quantitative Assessment of NPP Changes in the Yellow River Source Area from 2001 to 2017. In Proceedings of the IOP Conference Series: Earth and Environmental Science Surakarta, Surakarta, Indonesia, 24–25 August 2021; p. 012002. [Google Scholar]
- Brilli, L.; Lugato, E.; Moriondo, M.; Gioli, B.; Toscano, P.; Zaldei, A.; Leolini, L.; Cantini, C.; Caruso, G.; Gucci, R. Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options. Mitig. Adapt. Strateg. Glob. Change 2019, 24, 467–491. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Assessing the characteristics of net primary production due to future climate change and CO2 under RCP4. 5 in China. Ecol. Complex. 2018, 34, 58–68. [Google Scholar] [CrossRef]
- Li, Y.; Qin, Y. The Response of Net Primary Production to Climate Change: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone in China. Int. J. Environ. Res. Public Health 2019, 16, 1497. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xie, Z.; Qin, Y.; Zheng, Z. Estimating relations of vegetation, climate change, and human activity: A case study in the 400 mm annual precipitation fluctuation zone, China. Remote Sens. 2019, 11, 1159. [Google Scholar] [CrossRef] [Green Version]
- Lixia, W.; Haixu, Z.; Zhao, L.; Shuangcheng, Z.; Jinling, K.; Liqian, G. A Coupling Model of Net Primary Productivity Pattern Simulation and Prediction. Geomat. Inf. Sci. Wuhan Univ. 2021, 1–12. [Google Scholar] [CrossRef]
- Saputra, M.H.; Lee, H.S. Prediction of land use and land cover changes for north sumatra, indonesia, using an artificial-neural-network-based cellular automaton. Sustainability 2019, 11, 3024. [Google Scholar] [CrossRef] [Green Version]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ. Processes 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Fang, L.; Li, S.; Wang, X. Parallel cellular automata Markov model for land use change prediction over MapReduce framework. ISPRS Int. J. Geo Inf. 2019, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.; Overmars, K. Dynamic Simulation of Land-use Change Trajectories with the CLUE-s Model. In Modelling Land-Use Change; Springer: Dordrecht, The Netherlands, 2007; pp. 321–337. [Google Scholar]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Chen, Z.; Lei, X.; Jia, K.; Wu, Y. Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model. J. Geogr. Sci. 2015, 25, 836–850. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci Total Env. 2020, 739, 139899. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Sohl, T.L.; Claggett, P.R. Clarity versus complexity: Land-use modeling as a practical tool for decision-makers. J. Environ. Manag. 2013, 129, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Ouyang, X.; He, Q.; Zhu, X. Simulation of Impacts of Urban Agglomeration Land Use Change on Ecosystem Services Value under Multi-Scenarios: Case Study in Changsha-Zhuzhou-Xiangtan Urban agglomeration. Econ. Geogr 2020, 40, 93–102. [Google Scholar]
- Arnold, C.L., Jr.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Chen, J.; Wu, H.; Hou, D.; Zhang, W.; Zhang, J.; Zhou, X.; Chen, L. A landscape shape index-based sampling approach for land cover accuracy assessment. Sci. China Earth Sci. 2016, 59, 2263–2274. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Imura, H.; Chen, X. Consistency of accuracy assessment indices for soft classification: Simulation analysis. ISPRS J. Photogramm. Remote Sens. 2010, 65, 156–164. [Google Scholar] [CrossRef]
- Xie, H.; Tong, X.; Meng, W.; Liang, D.; Wang, Z.; Shi, W. A multilevel stratified spatial sampling approach for the quality assessment of remote-sensing-derived products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4699–4713. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Running, S.; Zhao, M. MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V006; 2019. V061; 2021. Available online: https://lpdaac.usgs.gov/products/mod17a3hgfv061/ (accessed on 10 January 2021).
- Wang, B.; Liao, J.; Zhu, W.; Qiu, Q.; Wang, L.; Tang, L. The weight of neighborhood setting of the FLUS model based on a historical scenario: A case study of land use simulation of urban agglomeration of the Golden Triangle of Southern Fujian in 2030. Acta Ecol. Sin 2019, 39, 4284–4298. [Google Scholar]
- Yuan, L.; Jiang, W.; Shen, W.; Liu, Y.; Wang, W.; Tao, L.; Zheng, H.; Liu, X. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Rehman, S. Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos Solitons Fractals 2009, 39, 499–509. [Google Scholar] [CrossRef]
- Ray, R.; Khondekar, M.H.; Ghosh, K.; Bhattacharjee, A.K. Scaling and nonlinear behaviour of daily mean temperature time series across India. Chaos Solitons Fractals 2016, 84, 9–14. [Google Scholar] [CrossRef]
- Noce, S.; Collalti, A.; Valentini, R.; Santini, M. Hot spot maps of forest presence in the Mediterranean basin. Iforest Biogeosci. For. 2016, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Jana, M.; Sar, N. Modeling of hotspot detection using cluster outlier analysis and Getis-Ord Gi* statistic of educational development in upper-primary level, India. Modeling Earth Syst. Environ. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shariati, M.; Mesgari, T.; Kasraee, M.; Jahangiri-Rad, M. Spatiotemporal analysis and hotspots detection of COVID-19 using geographic information system (March and April, 2020). J. Environ. Health Sci. Eng. 2020, 18, 1499–1507. [Google Scholar] [CrossRef]
- Zhang, R.; Min, Q.; Su, J. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci. 2017, 60, 1124–1132. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B., Jr.; Li, Q. China’s forest policy for the 21st century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugar, G.; Halada, L.; Bezak, P. Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog. Phys. Geogr. 2010, 34, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Izakovičová, Z.; Miklós, L.; Miklósová, V.; Petrovič, F. The integrated approach to landscape management—Experience from Slovakia. Sustainability 2019, 11, 4554. [Google Scholar] [CrossRef] [Green Version]
- Machar, I.; Simon, J.; Brus, J.; Pechanec, V.; Kiliánová, H.; Filippovová, J.; Vrublová, K.; Mackovcin, P. A growth simulation model as a support tool for conservation management strategy in a mountain protected area. J. Prot. Mt. Areas Res. Manag. 2018, 10, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Chang, S.; Wang, J.; Zhang, F.; Niu, L.; Wang, Y. A study of the impacts of urban expansion on vegetation primary productivity levels in the Jing-Jin-Ji region, based on nighttime light data. J. Clean. Prod. 2020, 263, 121490. [Google Scholar] [CrossRef]
- Peng, J.; Shen, H.; Wu, W.; Liu, Y.; Wang, Y. Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: A case study in Beijing City, China. Landsc. Ecol. 2016, 31, 1077–1092. [Google Scholar] [CrossRef]
- Basuki, I.; Kauffman, J.B.; Peterson, J.T.; Anshari, G.Z.; Murdiyarso, D. Land Cover and Land Use Change Decreases Net Ecosystem Production in Tropical Peatlands of West Kalimantan, Indonesia. Forests 2021, 12, 1587. [Google Scholar] [CrossRef]
- Enoguanbhor, E.C.; Gollnow, F.; Nielsen, J.O.; Lakes, T.; Walker, B.B. Land cover change in the Abuja City-Region, Nigeria: Integrating GIS and remotely sensed data to support land use planning. Sustainability 2019, 11, 1313. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
Drivers | Description | Source | Resolution | |
---|---|---|---|---|
Physiographic factors | DEM | ASTER GDEM | http://www.gscloud.cn, accessed on 30 October 2021 | 30 m |
Slope | Ratio of the vertical height of the slope to the horizontal distance | Retrieved from DEM | 30 m | |
Aspect | Direction of the projection of a slope normal onto a horizontal plane | Retrieved from DEM | 30 m | |
Nutrient availability | Soil texture, soil organic carbon, soil pH, total exchangeable bases | http://webarchive.iiasa.ac.at/Research, accessed on 30 October 2021 | 1 km | |
Oxygen availability to roots | Soil drainage and soil phases affecting soil drainage | http://webarchive.iiasa.ac.at/Research, accessed on 30 October 2021 | 1 km | |
Excess salts | Soil salinity, soil sodicity and soil phases influencing salt conditions | http://webarchive.iiasa.ac.at/Research, accessed on 30 October 2021 | 1 km | |
Toxicity | Calcium carbonate and gypsum | http://webarchive.iiasa.ac.at/Research, accessed on 30 October 2021 | 1 km | |
Workability | Soil texture, effective soil depth/volume, and soil phases constraining soil management (soil depth, rock outcrop, stoniness, gravel/concretions and hardpans) | http://webarchive.iiasa.ac.at/Research, accessed on 30 October 2021 | 1 km | |
Temperature | Interpolation from the monthly data set of surface climatic data in China | http://data.cma.cn, accessed on 30 October 2021 | 250 m | |
Precipitation | Interpolation from the monthly data set of surface climatic data in China | http://data.cma.cn, accessed on 30 October 2021 | 250 m | |
Transportation factors | Distance to water | Euclidean distance from the location to the water body in LULC types | http://data.casearth.cn, accessed on 30 October 2021 | 30 m |
Distance to main road | Euclidean distance from the location to the main roads | http://www.ngcc.cn, accessed on 30 October 2021 | 30 m | |
Distance to railroad | Euclidean distance from the location to the railroads | http://www.ngcc.cn, accessed on 30 October 2021 | 30 m | |
Distance to settlement | Euclidean distance from the location to the settlements | http://www.ngcc.cn, accessed on 30 October 2021 | 30 m | |
Socioeconomic factors | Population density | The number of people per unit of land area | http://www.worldpop.org, accessed on 30 October 2021 | 100 m |
GDP | Gross Domestic Product | http://www.resdc.cn, accessed on 30 October 2021 | 1 km |
Year | Cropland | Forest | Grassland | Wetland | Water Body | Impervious Surface | Bare Area | |
---|---|---|---|---|---|---|---|---|
Total area | 2000 | 5667.19 | 7158.44 | 1712.97 | 8.18 | 255.93 | 1589.96 | 0.23 |
2010 | 5342.04 | 7332.59 | 1321.45 | 9.50 | 151.19 | 2235.85 | 0.30 | |
2020 | 3902.51 | 7388.60 | 1371.74 | 11.87 | 238.33 | 3475.76 | 4.11 | |
Neighborhood weights | 0.06 | 0.54 | 0 | 0.38 | 0.28 | 1 | 0.38 | |
Land demands | 2030 | 2927.05 | 7407.67 | 1395.65 | 12.04 | 307.42 | 4338.19 | 4.89 |
Change Trend | Significance Level | Category | Area | Proportion |
---|---|---|---|---|
<0 | p < 0.01 | Extremely significant decline | 2.14 | 0.01% |
<0 | 0.01 ≤ p < 0.05 | Significant decline | 4.57 | 0.03% |
<0 | p ≥ 0.05 | Slightly decline | 59.59 | 0.36% |
=0 | Stable | 2102.27 | 12.82% | |
>0 | p ≥ 0.05 | Slightly rise | 1092.03 | 6.66% |
>0 | 0.01 ≤ p < 0.05 | Significant rise | 1555.27 | 9.49% |
>0 | p < 0.01 | Extremely significant rise | 11,577.04 | 70.62% |
Change Trend | Hurst | Future Trends | Area | Proportion |
---|---|---|---|---|
<0 | 0 < H < 0.5 | Rise | 6.65 | 0.04% |
<0 | 0.5 < H < 1 | Continuous decline | 59.64 | 0.36% |
=0 | Stable | 2102.68 | 12.83% | |
>0 | 0 < H < 0.5 | Decline | 329.77 | 2.01% |
>0 | 0.5 < H < 1 | Continuous rise | 13,894.17 | 84.76% |
Hot Spot (p < 0.01) | ||||||
---|---|---|---|---|---|---|
/km2 | Cropland | Forest | Grassland | Water Body | Impervious Surface | Total |
Cropland | 4.528 | 0.860 | 1.959 | 0.029 | 0.010 | 7.387 |
Forest | 1.158 | 1148.492 | 21.816 | 0.196 | 1171.661 | |
Grassland | 0.842 | 20.721 | 43.427 | 0.217 | 0.002 | 65.209 |
Wetland | 0.008 | 0.002 | 0.005 | 0.004 | 0.019 | |
Water body | 0.041 | 0.104 | 0.008 | 1.864 | 2.017 | |
Impervious surface | 1.153 | 1.687 | 1.408 | 0.004 | 0.094 | 4.347 |
Bare area | 0.002 | 0.020 | 0.022 | |||
Total | 7.731 | 1171.868 | 68.643 | 2.315 | 0.106 | 1250.662 |
Cold Spot (p < 0.01) | ||||||||
---|---|---|---|---|---|---|---|---|
/km2 | Cropland | Forest | Grassland | Water Body | Wetland | Impervious Surface | Bare Area | Total |
Cropland | 3396.14 | 34.68 | 166.78 | 14.93 | 1.46 | 51.28 | 0.00 | 3665.27 |
Forest | 170.65 | 4707.03 | 316.92 | 6.77 | 0.15 | 1.47 | 0.00 | 5202.99 |
Grassland | 146.83 | 202.45 | 765.26 | 14.67 | 1.82 | 10.74 | 0.07 | 1141.84 |
Water body | 30.12 | 2.22 | 9.05 | 48.43 | 2.91 | 2.67 | 0.02 | 95.42 |
Wetland | 1.58 | 1.18 | 1.32 | 0.83 | 0.13 | 0.23 | 5.29 | |
Impervious surface | 1305.30 | 37.92 | 183.51 | 5.26 | 0.13 | 708.79 | 0.01 | 2240.93 |
Bare area | 2.08 | 0.11 | 1.50 | 0.09 | 0.06 | 3.85 | ||
Total | 5052.71 | 4985.60 | 1444.35 | 90.98 | 6.60 | 775.18 | 0.16 | 12,355.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, J.; Xiong, N.; Sun, L.; Xu, J. Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation. Remote Sens. 2022, 14, 1755. https://doi.org/10.3390/rs14071755
Chen Y, Wang J, Xiong N, Sun L, Xu J. Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation. Remote Sensing. 2022; 14(7):1755. https://doi.org/10.3390/rs14071755
Chicago/Turabian StyleChen, Yuhan, Jia Wang, Nina Xiong, Lu Sun, and Jiangqi Xu. 2022. "Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation" Remote Sensing 14, no. 7: 1755. https://doi.org/10.3390/rs14071755
APA StyleChen, Y., Wang, J., Xiong, N., Sun, L., & Xu, J. (2022). Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation. Remote Sensing, 14(7), 1755. https://doi.org/10.3390/rs14071755