Characterising the Aboveground Carbon Content of Saltmarsh in Jervis Bay, NSW, Using ArborCam and PlanetScope
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Sampling and Calculation of Aboveground Carbon Content
2.3. Acquisition of Remote Sensing Data
2.4. Calculating the Normalized Difference Vegetation Index
2.5. Investigating the Relationship between ArborCam Normalized Band Differences and Aboveground Carbon Content
2.6. Mapping Aboveground Carbon Content in Saltmarsh Using ArborCam
2.7. Assessing PlanetScope NDVI for Capturing Saltmarsh Spectral Response
2.8. Analysis of Temporal Variation in Saltmarsh NDVI Using PlanetScope
3. Results
3.1. Investigating the Relationship between ArborCam Normalized Band Differences and Aboveground Carbon Content
3.2. Mapping Aboveground Carbon Content in Saltmarsh Using ArborCam
3.3. Assessing PlanetScope NDVI for Capturing Saltmarsh Spectral Response
3.4. Analysis of Temporal Variation in Saltmarsh NDVI Using PlanetScope
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davidson, N.C.; van Dam, A.A.; Finlayson, C.M.; McInnes, R.J. Worth of wetlands: Revised global monetary values of coastal and inland wetland ecosystem services. Mar. Freshw. Res. 2019, 70, 1189–1194. [Google Scholar] [CrossRef]
- McKinley, E.; Ballinger, R.C.; Beaumont, N.J. Saltmarshes, ecosystem services, and an evolving policy landscape: A case study of Wales, UK. Mar. Policy 2018, 91, 1–10. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Carbon Balance in Salt Marsh and Mangrove Ecosystems: A Global Synthesis. J. Mar. Sci. Eng. 2020, 8, 767. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, J.; Li, Z.; Li, Y. Assessment of Blue Carbon Storage Loss in Coastal Wetlands under Rapid Reclamation. Sustainability 2018, 10, 2818. [Google Scholar] [CrossRef] [Green Version]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saintilan, N.; Williams, R.J. Short Note: The Decline of Saltmarsh in Southeast Australia: Results of Recent Surveys. Wetl. Aust. 2000, 18, 49–54. [Google Scholar] [CrossRef]
- Hickey, S.M.; Radford, B.; Callow, J.N.; Phinn, S.R.; Duarte, C.M.; Lovelock, C.E. ENSO Feedback Drives Variations in Dieback at a Marginal Mangrove Site. Sci. Rep. 2021, 11, 8130. [Google Scholar] [CrossRef]
- Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Lu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland Carbon Storage Controlled by Millennial-Scale Variation in Relative Sea-Level Rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef]
- Kelleway, J.J.; Saintilan, N.; Macreadie, P.I.; Skilbeck, C.G.; Zawadzki, A.; Ralph, P.J. Seventy Years of Continuous Encroachment Substantially Increases ‘Blue Carbon’ Capacity as Mangroves Replace Intertidal Salt Marshes. Glob. Chang. Biol. 2016, 22, 1097–1109. [Google Scholar] [CrossRef]
- Whitt, A.A.; Coleman, R.; Lovelock, C.E.; Gillies, C.; Ierodiaconou, D.; Liyanapathirana, M.; Macreadie, P.I. March of the Mangroves: Drivers of Encroachment into Southern Temperate Saltmarsh. Estuar. Coast. Shelf Sci. 2020, 240, 106776. [Google Scholar] [CrossRef]
- Ullman, R.; Bilbao-Bastida, V.; Grimsditch, G. Including Blue Carbon in Climate Market Mechanisms. Ocean Coast. Manag. 2013, 83, 15–18. [Google Scholar] [CrossRef]
- Radabaugh, K.R.; Moyer, R.P.; Chappel, A.R.; Powell, C.E.; Bociu, I.; Clark, B.C.; Smoak, J.M. Coastal Blue Carbon Assessment of Mangroves, Salt Marshes, and Salt Barrens in Tampa Bay, Florida, USA. Estuaries Coasts 2018, 41, 1496–1510. [Google Scholar] [CrossRef]
- Daly, T. Coastal Saltmarsh; Primefact; NSW Department of Primary Industries: Orange, Australia, 2013; p. 16.
- Laegdsgaard, P. Ecology, Disturbance and Restoration of Coastal Saltmarsh in Australia: A Review. Wetl. Ecol. Manag. 2006, 14, 379–399. [Google Scholar] [CrossRef]
- ABARES. Australia’s State of the Forests Report 2013; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2013.
- Russell, K. NSW Northern Rivers Estuary Habitat Mapping-Final Analysis Report; NSW Department of Primary Industries: Port Stephens, Australia, 2005.
- Dong, J.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass: Carbon Pools, Sources, and Sinks. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Patenaude, G.; Hill, R.A.; Milne, R.; Gaveau, D.L.A.; Briggs, B.B.J.; Dawson, T.P. Quantifying Forest above Ground Carbon Content Using LiDAR Remote Sensing. Remote Sens. Environ. 2004, 93, 368–380. [Google Scholar] [CrossRef]
- Navarro, A.; Young, M.; Macreadie, P.I.; Nicholson, E.; Ierodiaconou, D. Mangrove and Saltmarsh Distribution Mapping and Land Cover Change Assessment for South-Eastern Australia from 1991 to 2015. Remote Sens. 2021, 13, 1450. [Google Scholar] [CrossRef]
- Johnston, R.M.; Barson, M.M. Remote Sensing of Australian Wetlands: An Evaluation of Landsat TM Data for Inventory and Classification. Mar. Freshw. Res. 1993, 44, 235–252. [Google Scholar] [CrossRef]
- O’Donnell, J.P.R.; Schalles, J.F. Examination of Abiotic Drivers and Their Influence on Spartina Alterniflora Biomass over a Twenty-Eight Year Period Using Landsat 5 TM Satellite Imagery of the Central Georgia Coast. Remote Sens. 2016, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Menenti, M.; Stoll, M.-P.; Belluco, E.; Marani, M. Mapping Mixed Vegetation Communities in Salt Marshes Using Airborne Spectral Data. Remote Sens. Environ. 2007, 107, 559–570. [Google Scholar] [CrossRef]
- Owers, C.J.; Rogers, K.; Woodroffe, C.D. Identifying Spatial Variability and Complexity in Wetland Vegetation Using an Object-Based Approach. Int. J. Remote Sens. 2016, 37, 4296–4316. [Google Scholar] [CrossRef] [Green Version]
- Kalacska, M.; Chmura, G.L.; Lucanus, O.; Bérubé, D.; Arroyo-Mora, J.P. Structure from Motion Will Revolutionize Analyses of Tidal Wetland Landscapes. Remote Sens. Environ. 2017, 199, 14–24. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite Symposium; Goddard Space Flight Centre: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Doughty, C.L.; Cavanaugh, K.C. Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2019, 11, 540. [Google Scholar] [CrossRef] [Green Version]
- Hickey, D.; Bruce, E. Examining Tidal Inundation and Salt Marsh Vegetation Distribution Patterns Using Spatial Analysis (Botany Bay, Australia). J. Coast. Res. 2010, 26, 94–102. [Google Scholar] [CrossRef]
- Gallant, A.L. The Challenges of Remote Monitoring of Wetlands. Remote Sens. 2015, 7, 10938–10950. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, C.E.; Strahler, A.H. The Factor of Scale in Remote Sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Planet Labs Inc. PlanetScope. Available online: https://developers.planet.com/docs/data/planetscope/ (accessed on 15 August 2021).
- NSW National Parks & Wildlife Service Jervis Bay National Park. Available online: https://www.nationalparks.nsw.gov.au/visit-a-park/parks/jervis-bay-national-park (accessed on 10 September 2021).
- Clarke, P.J.; Jacoby, C.A. Biomass and Above-Ground Productivity of Salt-Marsh Plants in South-Eastern Australia. Mar. Freshw. Res. 1994, 45, 1521–1528. [Google Scholar] [CrossRef]
- Clarke, P.J. Mangrove, Saltmarsh and Peripheral Vegetation of Jervis Bay. Cunninghamia 1993, 3, 231–253. [Google Scholar]
- Owers, C.J.; Rogers, K.; Woodroffe, C.D. Spatial Variation of Above-Ground Carbon Storage in Temperate Coastal Wetlands. Estuar. Coast. Shelf Sci. 2018, 210, 55–67. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Sun, C.; Fagherazzi, S.; Liu, Y. Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery. Estuar. Coast. Shelf Sci. 2018, 213, 61–80. [Google Scholar] [CrossRef]
- Myneni, R.B.; Tucker, C.J.; Asrar, G.; Keeling, C.D. Interannual Variations in Satellite-Sensed Vegetation Index Data from 1981 to 1991. J. Geophys. Res. Atmos. 1998, 103, 6145–6160. [Google Scholar] [CrossRef] [Green Version]
- Epiphanio, J.C.N.; Huete, A.R. Dependence of NDVI and SAVI on sun/sensor geometry and its effect on fAPAR relationships in Alfalfa. Remote Sens. Environ. 1995, 51, 351–360. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Gollob, H.F. Cross-Validation Using Samples of Size One. In Proceedings of the American Psychological Association Meeting, Washington, DC, USA, 1–5 September 1967. [Google Scholar]
- Girden, E.R. ANOVA: Repeated Measures; SAGE: Newcastle upon Tyne, UK, 1992; ISBN 978-0-8039-4257-8. [Google Scholar]
- Mauchly, J.W. Significance Test for Sphericity of a Normal N-Variate Distribution. Ann. Math. Stat. 1940, 11, 204–209. [Google Scholar] [CrossRef]
- Greenhouse, S.W.; Geisser, S. On Methods in the Analysis of Profile Data. Psychometrika 1959, 24, 95–112. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Kearney, M.S.; Stutzer, D.; Turpie, K.; Stevenson, J.C. The Effects of Tidal Inundation on the Reflectance Characteristics of Coastal Marsh Vegetation. J. Coast. Res. 2009, 25, 1177–1186. [Google Scholar] [CrossRef]
- Morton, D.C.; Nagol, J.; Carabajal, C.C.; Rosette, J.; Palace, M.; Cook, B.D.; Vermote, E.F.; Harding, D.J.; North, P.R.J. Amazon Forests Maintain Consistent Canopy Structure and Greenness during the Dry Season. Nature 2014, 506, 221–224. [Google Scholar] [CrossRef]
- Australian Bureau of Meteorology. Climate Data Online. Available online: http://www.bom.gov.au/climate/data/index.shtml (accessed on 15 August 2021).
- Jervis Bay Tide Times, NSW 2540. Available online: https://tides.willyweather.com.au/nsw/illawarra/jervis-bay.html (accessed on 15 August 2021).
- Saintilan, N.; Rogers, K.; Kelleway, J.J.; Ens, E.; Sloane, D.R. Climate Change Impacts on the Coastal Wetlands of Australia. Wetlands 2019, 39, 1145–1154. [Google Scholar] [CrossRef]
- Eslami-Andargoli, L.; Dale, P.; Sipe, N.; Chaseling, J. Mangrove Expansion and Rainfall Patterns in Moreton Bay, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 2009, 85, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Saintilan, N.; Rogers, K.; Mazumder, D.; Woodroffe, C. Allochthonous and Autochthonous Contributions to Carbon Accumulation and Carbon Store in Southeastern Australian Coastal Wetlands. Estuar. Coast. Shelf Sci. 2013, 128, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.G.; Zhang, L.Q. Multi-Seasonal Spectral Characteristics Analysis of Coastal Salt Marsh Vegetation in Shanghai, China. Estuar. Coast. Shelf Sci. 2006, 69, 217–224. [Google Scholar] [CrossRef]
- Congdon, R.A.; McComb, A.J. Productivity and Nutrient Content of Juncus kraussii in an Estuarine Marsh in South-Western Australia. Aust. J. Ecol. 1980, 5, 221–234. [Google Scholar] [CrossRef]
- de Leeuw, J.; Olff, H.; Bakker, J.P. Year-to-Year Variation in Peak above-Ground Biomass of Six Salt-Marsh Angiosperm Communities as Related to Rainfall Deficit and Inundation Frequency. Aquat. Bot. 1990, 36, 139–151. [Google Scholar] [CrossRef]
- Duke, N.C.; Field, C.; Mackenzie, J.R.; Meynecke, J.-O.; Wood, A.L. Rainfall and Its Possible Hysteresis Effect on the Proportional Cover of Tropical Tidal-Wetland Mangroves and Saltmarsh–Saltpans. Mar. Freshw. Res. 2019, 70, 1047–1055. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, Y.; Li, J.; Dou, W. The Impact of Spatial Resolution on NDVI over Heterogeneous Surface. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005; Volume 2, pp. 1310–1313, ISBN 978-0-7803-9050-4. [Google Scholar]
Saltmarsh Species | Aboveground Biomass (Mg ha−1) | Carbon Content (% C) |
---|---|---|
Sarcocornia quinqueflora | 6.88 | 34.4 |
Samolus repens1 | 5.51 | 42.5 |
Sporobolus virginicus | 10.12 | 38.0 |
Juncus kraussii | 15.97 | 42.9 |
ArborCam Bands | PlanetScope Bands | ||||
---|---|---|---|---|---|
Number | Name | Centre (nm) | Number | Name | Range (nm) |
1 | Blue | 450 | 1 | Blue | 455–515 |
2 | Green-1 | 530 | 2 | Green | 500–590 |
3 | Green-2 | 570 | |||
4 | Red-1 | 655 | 3 | Red | 590–670 |
5 | Red-2 | 680 | |||
6 | Red-edge | 720 | |||
7 | NIR | 780 | 4 | NIR | 780–860 |
Acquisition (UTC) | Local Time | PlanetScope Image ID | Tide (m) |
---|---|---|---|
17 April 2020 23:40 | 18 April 2020 09:40 | 20200417_234006_101f | 0.6 |
18 May 2020 23:39 | 19 May 2020 09:39 | 20200518_233928_1032 | 0.7 |
15 June 2020 23:00 | 16 June 2020 09:00 | 20200615_230004_0f46 | 0.7 |
13 July 2020 00:10 | 13 July 2020 10:10 | 20200713_001012_26_1064 | 0.7 |
25 August 2020 23:38 | 26 August 2020 09:38 | 20200825_233805_1009 | 0.6 |
27 September 2020 00:12 | 27 September 2020 10:12 | 20200927_001210_14_1061 | 0.7 |
22 October 2020 22:39 | 23 October 2020 09:39 | 20201022_223957_0f2a | 0.8 |
25 November 2020 23:48 | 26 November 2020 10:48 | 20201125_234809_79_105c | 0.8 |
24 December 2020 00:15 | 24 December 2020 11:15 | 20201224_001518_69_105d | 0.7 |
21 January 2021 00:03 | 21 January 2021 11:03 | 20210121_000350_37_2416 | 0.8 |
20 February 2021 00:17 | 20 February 2021 11:17 | 20210220_001743_67_105d | 0.7 |
24 March 2021 00:18 | 24 March 2021 11:18 | 20210324_001859_67_105e | 0.6 |
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | |
---|---|---|---|---|---|---|
Band 2 | −0.19 | |||||
Band 3 | −0.23 | −0.27 | ||||
Band 4 | −0.46 ** | −0.54 ** | −0.57 ** | |||
Band 5 | −0.46 ** | −0.53 ** | −0.54 ** | −0.10 | ||
Band 6 | 0.38 * | 0.53 ** | 0.64 ** | 0.79 ** | 0.79 ** | |
Band 7 | 0.54 ** | 0.64 ** | 0.70 ** | 0.79 ** | 0.79 ** | 0.76 ** |
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | |
---|---|---|---|---|---|---|
Band 2 | −0.27 | |||||
Band 3 | −0.19 | −0.11 | ||||
Band 4 | −0.13 | −0.08 | −0.02 | |||
Band 5 | 0.05 | 0.17 | 0.25 | 0.83 * | ||
Band 6 | 0.87 * | 0.92 ** | 0.96 ** | 0.89 * | 0.85 * | |
Band 7 | 0.94 ** | 0.95 ** | 0.96 ** | 0.89 * | 0.87 * | 0.87 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warwick-Champion, E.; Davies, K.P.; Barber, P.; Hardy, N.; Bruce, E. Characterising the Aboveground Carbon Content of Saltmarsh in Jervis Bay, NSW, Using ArborCam and PlanetScope. Remote Sens. 2022, 14, 1782. https://doi.org/10.3390/rs14081782
Warwick-Champion E, Davies KP, Barber P, Hardy N, Bruce E. Characterising the Aboveground Carbon Content of Saltmarsh in Jervis Bay, NSW, Using ArborCam and PlanetScope. Remote Sensing. 2022; 14(8):1782. https://doi.org/10.3390/rs14081782
Chicago/Turabian StyleWarwick-Champion, Elizabeth, Kevin P. Davies, Paul Barber, Naviin Hardy, and Eleanor Bruce. 2022. "Characterising the Aboveground Carbon Content of Saltmarsh in Jervis Bay, NSW, Using ArborCam and PlanetScope" Remote Sensing 14, no. 8: 1782. https://doi.org/10.3390/rs14081782
APA StyleWarwick-Champion, E., Davies, K. P., Barber, P., Hardy, N., & Bruce, E. (2022). Characterising the Aboveground Carbon Content of Saltmarsh in Jervis Bay, NSW, Using ArborCam and PlanetScope. Remote Sensing, 14(8), 1782. https://doi.org/10.3390/rs14081782