Assessments of Cloud Liquid Water and Total Precipitable Water Derived from FY-3E MWTS-III and NOAA-20 ATMS
Abstract
:1. Introduction
2. Instrument Characteristics
2.1. ATMS vs. MWTS-III
2.2. Determination of MWTS-III Channel Polarization
3. CLW and TPW Algorithms
4. Retrieval Results
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paltridge, G.W. Cloud-radiation feedback to climate. Q. J. R. Meteorol. Soc. 1980, 106, 895–899. [Google Scholar] [CrossRef]
- Stephens, G.L. Cloud Feedbacks in the Climate System: A Critical Review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lyu, W. Analyzing of Cloud Macroscopic Characteristics in the Shigatse Area of the Tibetan Plateau Using the Total-Sky Images. J. Appl. Meteorol. Climatol. 2018, 57, 1977–1987. [Google Scholar] [CrossRef]
- Nandan, R.; Ratnam, M.V.; Kiran, V.R. Retrieval of cloud liquid water path using radiosonde measurements: Comparison with MODIS and ERA5. J. Atmos. Sol.-Terr. Phys. 2022, 227, 105799. [Google Scholar] [CrossRef]
- Yang, J.; Min, Q. A total sky cloud detection method using real clear sky background. Atmos. Meas. Tech. 2016, 9, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Gui, K.; Che, H.; Chen, Q. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos. Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Cadeddu, M.P.; Ghate, V.P.; Mech, M. Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds. Atmos. Meas. Tech. 2020, 13, 1485–1499. [Google Scholar] [CrossRef] [Green Version]
- Karavaev, D.M.; Shchukin, G.G.; Efremenko, A.N. Ground-based Microwave Radiometry for measurements of Atmospheric Water Vapour and Cloud Liquid Water Contents. J. Phys. Conf. Ser. 2020, 1632, 012026. [Google Scholar] [CrossRef]
- Omotosho, T.V.; Mandeep, J.S.; Abdullah, M. Cloud cover, cloud liquid water and cloud attenuation at Ka and V bands over equatorial climate. Meteorol. Appl. 2014, 21, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.; Shi, J.; Xiong, C.; Wang, T.; Zhang, Y. A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing. Remote. Sens. Environ. 2017, 191, 313–327. [Google Scholar] [CrossRef]
- Weng, F. Cloud Liquid Water. In Encyclopedia of Remote Sensing, 2nd ed.; Njoku, E.G., Ed.; Encyclopedia of Earth Sciences Series; Springer: New York, NY, USA, 2014; pp. 68–70. [Google Scholar]
- Weng, F. Remote Sensing of Clouds from Microwave Sounding Instruments. In Passive Microwave Remote Sensing of the Earth: For Meteorological Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 207–234. [Google Scholar]
- Grody, N. Remote sensing of atmospheric water content from satellites using microwave radiometry. IEEE Trans. Antennas Propag. 1976, 24, 155–162. [Google Scholar] [CrossRef]
- Alishouse, J.C.; Snider, J.B.; Westwater, E.R. Determination of cloud liquid water content using the SSM/I. IEEE Trans. Geosci. Electron. 1990, 28, 817–822. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Grody, N.C.; Weng, F. An Eight-Year (1987–1994) Time Series of Rainfall, Clouds, Water Vapor, Snow Cover, and Sea Ice Derived from SSM/I Measurements. Bull. Am. Meteorol. Soc. 1996, 77, 891–905. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Stephens, G.L.; Vonder Haar, T. A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations. J. Geophys. Res. Atmos. 1993, 98, 18471–18488. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huang, Q.B.; Zhang, W.M.; Liu, B.N.; Xing, D.; Xing, X.; Luo, T.L.; Wang, W.F.; Zhang, X.G. Retrieval of Cloud Water Variables by 1D-Var Algorithm. ITM Web Conf. 2017, 12, 03007. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.L.; Stephens, G.L. A Study of SSM/I-Derived Columnar Water Vapor over the Global Oceans. J. Clim. 1995, 8, 2025–2038. [Google Scholar] [CrossRef] [Green Version]
- Kummerow, C.; Olson, W.S.; Giglio, L. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1213–1232. [Google Scholar] [CrossRef]
- Nimnuan, P.; Janjai, S.; Nunez, M.; Pratummasoot, N. Determination of effective droplet radius and optical depth of liquid water clouds over a tropical site in northern Thailand using passive microwave soundings, aircraft measurements and spectral irradiance data. J. Atmos. Sol.-Terr. Phys. 2017, 161, 8–18. [Google Scholar] [CrossRef]
- Olson, W.S.; Kummerow, C.D.; Heymsfield, G.M.; Giglio, L. A Method for Combined Passive–Active Microwave Retrievals of Cloud and Precipitation Profiles. J. Appl. Meteorol. 1996, 35, 1763–1789. [Google Scholar] [CrossRef]
- Weng, F.; Grody, N.C. Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res. 1994, 99, 25535. [Google Scholar] [CrossRef]
- Weng, F.; Grody, N.C.; Ferraro, R.R. Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager. J. Clim. 1997, 10, 1086–1098. [Google Scholar] [CrossRef]
- Weng, F.; Zhao, L.; Ferraro, R.R. Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci. 2003, 38, 8068. [Google Scholar] [CrossRef]
- Abbasi, B.; Qin, Z.; Du, W.; Fan, J.; Zhao, C.; Hang, Q.; Zhao, S.; Li, S. An Algorithm to Retrieve Total Precipitable Water Vapor in the Atmosphere from FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) Data. Remote Sens. 2020, 12, 3469. [Google Scholar] [CrossRef]
- Guan, J.P.; Yin, Y.T.; Zhang, L.F.; Wang, J.N.; Zhang, M.Y. Comparison Analysis of Total Precipitable Water of Satellite-Borne Microwave Radiometer Retrievals and Island Radiosondes. Atmosphere 2019, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Rodier, S.; Xu, K.-M.; Sun, W.; Huang, J.; Lin, B.; Zhai, P.; Josset, D. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res. 2010, 115, D00H34. [Google Scholar] [CrossRef]
- Mitchell, D.L.; d’Entremont, R.P. Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 °C. Atmos. Meas. Tech. 2012, 5, 1683–1698. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Zou, X. Liquid Water Path Retrieval Using the Lowest Frequency Channels of Fengyun-3C Microwave Radiation Imager (MWRI). J. Meteor. Res. 2017, 31, 1109–1122. [Google Scholar] [CrossRef]
- Grody, N.; Zhao, J.; Ferraro, R.; Weng, F.; Boers, R. Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res. Atmos. 2001, 106, 2943–2953. [Google Scholar] [CrossRef]
- Bormann, N.; Fouilloux, A.; Bell, W. Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos. 2013, 118, 12970–12980. [Google Scholar] [CrossRef]
- Doherty, A.; Atkinson, N.; Bell, W.; Smith, A. An Assessment of Data from the Advanced Technology Microwave Sounder at the Met Office. Adv. Meteorol. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Zou, X. Diurnal Variation in Cloud Liquid Water Path Derived from Five Cross-Track Microwave Radiometers Onboard Polar-Orbiting Satellites. Remote Sens. 2020, 12, 2177. [Google Scholar] [CrossRef]
- Goldberg, M.; Weng, F. Advanced Technology Microwave Sounder. In Earth Science Satellite Remote Sensing, 2nd ed.; Qu, J., Gao, W., Kafatos, M., Murphy, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 243–253. [Google Scholar]
- Zhang, P.; Hu, X.; Lu, Q.; Zhu, A.; Lin, M. FY-3E: The First Operational Meteorological Satellite Mission in an Early Morning Orbit. Adv. Atmos. Sci. 2022, 39, 1–8. [Google Scholar] [CrossRef]
- Weng, F.; Yang, H.; Zou, X. On Convertibility from Antenna to Sensor Brightness Temperature for ATMS. IEEE Geosci. Remote. Sens. Lett. 2013, 10, 771–775. [Google Scholar] [CrossRef]
- Yang, H.; Weng, F.; Anderson, K. Estimation of ATMS Antenna Emission from Cold Space Observations. IEEE Trans. Geosci. Electron. 2016, 54, 4479–4487. [Google Scholar] [CrossRef]
- Weng, F.; Yu, X.; Duan, Y. Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications. Adv. Atmos. Sci. 2020, 37, 131–136. [Google Scholar] [CrossRef] [Green Version]
Channel Number | Center Frequency (GHz) | Bandwidth (MHz) | (K) |
---|---|---|---|
1 | 23.8 | 270 | 0.7 |
2 | 31.4 | 180 | 0.8 |
3 | 50.3 | 180 | 0.9 |
4 | 51.76 | 400 | 0.7 |
5 | 52.8 | 400 | 0.7 |
6 | 53.596 ± 0.115 | 2 × 170 | 0.7 |
7 | 54.4 | 400 | 0.7 |
8 | 54.94 | 400 | 0.7 |
9 | 55.5 | 330 | 0.7 |
10 | 57.29(fo) | 330 | 0.75 |
11 | fo ± 0.217 | 2 × 78 | 1.2 |
12 | fo ± 0.3222 ± 0.048 | 4 × 36 | 1.2 |
13 | fo ± 0.3222 ± 0.022 | 4 × 16 | 1.5 |
14 | fo ± 0.3222 ± 0.010 | 4 × 8 | 2.4 |
15 | fo ± 0.3222 ± 0.0045 | 4 × 3 | 3.6 |
16 | 88.2 | 2000 | 0.5 |
17 | 165.5 | 3000 | 0.6 |
18 | 183.31 ± 7.0 | 2000 | 0.8 |
19 | 183.31 ± 4.5 | 2000 | 0.8 |
20 | 183.31 ± 3.0 | 1000 | 0.8 |
21 | 183.31 ± 1.8 | 1000 | 0.8 |
22 | 183.31 ± 1.0 | 500 | 0.9 |
Channel Number | Center Frequency (GHz) | Bandwidth (MHz) | (K) |
---|---|---|---|
1 | 23.8 | 270 | 0.30 |
2 | 31.4 | 180 | 0.35 |
3 | 50.30 | 180 | 0.35 |
4 | 51.76 | 400 | 0.30 |
5 | 52.8 | 400 | 0.30 |
6 | 53.246 ± 0.08 | 2 × 140 | 0.35 |
7 | 53.596 ± 0.115 | 2 × 170 | 0.30 |
8 | 53.948 ± 0.081 | 2 × 142 | 0.35 |
9 | 54.40 | 400 | 0.30 |
10 | 54.94 | 400 | 0.30 |
11 | 55.50 | 330 | 0.30 |
12 | 57.29(fo) | 330 | 0.60 |
13 | fo ± 0.217 | 2 × 78 | 0.70 |
14 | fo ± 0.322 ± 0.048 | 4 × 36 | 0.80 |
15 | fo ± 0.322 ± 0.022 | 4 × 16 | 1.00 |
16 | fo ± 0.322 ± 0.010 | 4 × 8 | 1.20 |
17 | fo ± 0.322 ± 0.0045 | 4 × 3 | 2.10 |
Orbit Node | Frequency (GHz) | ||||||
---|---|---|---|---|---|---|---|
ascending | 23.8 | 7.56086 | 0.599034 | 31.9538 | −5.66606 | −0.0024 | 0.002557 |
31.4 | 0.498883 | 14.7335 | −3.69799 | 0.280111 | −0.01215 | 0.000466 | |
descending | 23.8 | 0.588579 | 8.67488 | 12.2642 | 0.562151 | −0.00766 | 0.00058 |
31.4 | 1.12823 | 8.7327 | 18.2881 | −0.58358 | −0.0138 | 0.000838 |
Orbit Node | Frequency (GHz) | ||||||
---|---|---|---|---|---|---|---|
ascending | 23.8 | −36111.1 | −2.11963 | 315.961 | 36108.3 | −0.760975 | −0.179592 |
31.4 | −15.7695 | −7.13451 | 49.5332 | 14.5176 | −0.036707 | −0.002507 | |
descending | 23.8 | −67476.8 | −3.62786 | 375.999 | 67471.6 | −1.72343 | −0.237488 |
31.4 | −0.718871 | −13.2727 | 17.7433 | −0.171598 | −0.005638 | −0.000172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Weng, F.; Yang, J. Assessments of Cloud Liquid Water and Total Precipitable Water Derived from FY-3E MWTS-III and NOAA-20 ATMS. Remote Sens. 2022, 14, 1853. https://doi.org/10.3390/rs14081853
Dong C, Weng F, Yang J. Assessments of Cloud Liquid Water and Total Precipitable Water Derived from FY-3E MWTS-III and NOAA-20 ATMS. Remote Sensing. 2022; 14(8):1853. https://doi.org/10.3390/rs14081853
Chicago/Turabian StyleDong, Changjiao, Fuzhong Weng, and Jun Yang. 2022. "Assessments of Cloud Liquid Water and Total Precipitable Water Derived from FY-3E MWTS-III and NOAA-20 ATMS" Remote Sensing 14, no. 8: 1853. https://doi.org/10.3390/rs14081853
APA StyleDong, C., Weng, F., & Yang, J. (2022). Assessments of Cloud Liquid Water and Total Precipitable Water Derived from FY-3E MWTS-III and NOAA-20 ATMS. Remote Sensing, 14(8), 1853. https://doi.org/10.3390/rs14081853