A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model
Abstract
:1. Introduction
2. The Pre-Operational Assimilation System
2.1. Performances of the Assimilation System
2.2. Comparison with AERONET In Situ Observations
3. Major Desert Dust Outbreak over Eastern Mediterranean: March 2018
3.1. Desert Dust Event over Greece on 22 March 2018
3.2. Comparison to AERONET Observations
4. Australian Wildfires: November 2019
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahowald, N.; Luo, C.; Del Corral, J.; Zender, C.S. Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. J. Geophys. Res. 2003, 108, 4352. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Intergovernmental Panel on Climate Change, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.; Jin, Y.V.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Jing, B.; Peng, C.; Wang, Y.; Liu, Q.; Tong, S.; Zhang, Y.; Ge, M. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles. Sci. Rep. 2017, 7, 43572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Intergovernmental Panel on Climate Change, Climate Change 2001: The scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Evangelista, H.; Maldonado, J.; Godoi, R.; Pereira, E.; Koch, D.; Tanizaki-Fonseca, K.; Van Grieken, R.; Sampaio, M.; Setzer, A.; Alencar, A.; et al. Sources and transport of urban and biomass burning aerosol black carbon at the South–West Atlantic Coast. J. Atmos. Chem. 2007, 56, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, T.; Bolzacchini, E.; Cataldi, M.; Ferrero, L.; Graßl, S.; Hansen, G.; Mateos, D.; Mazzola, M.; Neuber, R.; Pakszys, P.; et al. Study of Chemical and Optical Properties of Biomass Burning Aerosols during Long-Range Transport Events toward the Arctic in Summer 2017. Atmosphere 2020, 11, 84. [Google Scholar] [CrossRef] [Green Version]
- Crutzen, P.J.; Andreae, M.O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Reid, J.; Koppmann, R.; Eck, T.; Eleuterio, D. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Milton, S.; Greed, G.; Brooks, M.; Haywood, J.; Johnson, B.; Allan, R.; Slingo, A.; Grey, W. Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Lisok, J.; Rozwadowska, A.; Pedersen, J.; Markowicz, K.; Ritter, C.; Kaminski, J.W.; Struzewska, J.; Mazzola, M.; Udisti, R.; Becagli, S.; et al. Radiative impact of an extreme Arctic biomass-burning event. Atmos. Chem. Phys. 2018, 18, 8829–8848. [Google Scholar] [CrossRef] [Green Version]
- Pani, S.K.; Lin, N.H.; Chantara, S.; Wang, S.H.; Khamkaew, C.; Prapamontol, T.; Janjai, S. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Sci. Total Environ. 2018, 633, 892–911. [Google Scholar] [CrossRef]
- Martins, L.D.; Hallak, R.; Alves, R.C.; de Almeida, D.S.; Squizzato, R.; Moreira, C.A.; Beal, A.; da Silva, I.; Rudke, A.; Martins, J.A. Long-range transport of aerosols from biomass burning over southeastern South America and their implications on air quality. Aerosol. Air Qual. Res. 2018, 18, 1734–1745. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Marlier, M.E.; DeFries, R.S.; Westervelt, D.M.; Xia, K.R.; Fiore, A.M.; Mickley, L.J.; Cusworth, D.H.; Milly, G. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmos. Environ. 2018, 172, 83–92. [Google Scholar] [CrossRef]
- Uranishi, K.; Ikemori, F.; Shimadera, H.; Kondo, A.; Sugata, S. Impact of field biomass burning on local pollution and long-range transport of PM2. 5 in Northeast Asia. Environ. Pollut. 2019, 244, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Zhang, X.X.; Sharratt, B.; Liu, L.Y.; Wang, Z.F.; Pan, X.L.; Lei, J.Q.; Wu, S.X.; Huang, S.Y.; Guo, Y.H.; Li, J.; et al. East Asian dust storm in May 2017: Observations, modelling, and its influence on the Asia-Pacific region. Atmos. Chem. Phys. 2018, 18, 8353–8371. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.P.; Emmons, L.K.; Hauglustaine, D.A.; Chu, D.A.; Gille, J.C.; Kaufman, Y.J.; Pétron, G.; Yurganov, L.N.; Giglio, L.; Deeter, M.N.; et al. Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. J. Geophys. Res. 2004, 109, 24202. [Google Scholar] [CrossRef]
- Yi, B.; Yang, P.; Baum, B.A. Impact of pollution on the optical properties of trans-Pacific East Asian dust from satellite and ground-based measurements. J. Geophys. Res. 2014, 119, 5397–5409. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Tanré, D.; Nakajima, T. Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. Bull. Am. Meteor. Soc. 1999, 80, 2229–2259. [Google Scholar] [CrossRef] [Green Version]
- Aminou, D. MSG’s SEVIRI instrument. ESA Bull. 2002, 111, 15–17. [Google Scholar]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Lidar Remote Sensing for Industry and Environment Monitoring III; Singh, U.N., Itabe, T., Lui, Z., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 4893, pp. 1–11. [Google Scholar]
- Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M.; et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 2006, 6, 1777–1813. [Google Scholar] [CrossRef] [Green Version]
- Schutgens, N.; Miyoshi, T.; Takemura, T.; Nakajima, T. Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model. Atmos. Chem. Phys. 2010, 10, 2561–2576. [Google Scholar] [CrossRef] [Green Version]
- El Amraoui, L.; Attié, J.L.; Ricaud, P.; Lahoz, W.A.; Piacentini, A.; Peuch, V.H.; Warner, J.X.; Abida, R.; Barré, J.; Zbinden, R. Tropospheric CO vertical profiles deduced from total columns using data assimilation: Methodology and Validation. Atmos. Meas. Tech. 2014, 7, 3035–3057. [Google Scholar] [CrossRef] [Green Version]
- Sič, B.; El Amraoui, L.; Piacentini, A.; Marécal, V.; Emili, E.; Cariolle, D.; Prather, M.; Attié, J.L. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: Aerosol optical depth. Atmos. Meas. Tech. 2016, 9, 5535–5554. [Google Scholar] [CrossRef] [Green Version]
- El Amraoui, L.; Sič, B.; Piacentini, A.; Marécal, V.; Frebourg, N.; Attié, J.L. Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: Lidar observations. Atmos. Meas. Tech. 2020, 13, 4645–4667. [Google Scholar] [CrossRef]
- Klumpp, A.; Ansel, W.; Klumpp, G.; Belluzzo, N.; Calatayud, V.; Chaplin, N.; Garrec, J.; Gutsche, H.; Hayes, M.; Hentze, H.; et al. EuroBionet: A Pan-European biomonitoring network for urban air quality assessment. Environ. Sci. Pollut. Res. 2002, 9, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, C.B.; Foltescu, V.; De Leeuw, F. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Barrero, M.; Orza, J.; Cabello, M.; Cantón, L. Categorisation of air quality monitoring stations by evaluation of PM10 variability. Sci. Total Environ. 2015, 524, 225–236. [Google Scholar] [CrossRef]
- Baldasano, J.; Jorba, O.; Vivanco, M.; Palomino, I.; Querol, X.; Pandolfi, M.; Sanz, M. Caliope: An operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands–first annual evaluation and ongoing developments. Adv. Sci. Res. 2008, 2, 89. [Google Scholar] [CrossRef]
- Stortini, M.; Arvani, B.; Deserti, M. Operational Forecast and Daily Assessment of the Air Quality in Italy: A Copernicus-CAMS Downstream Service. Atmosphere 2020, 11, 447. [Google Scholar] [CrossRef]
- Wagner, A.; Blechschmidt, A.M.; Bouarar, I.; Brunke, E.G.; Clerbaux, C.; Cupeiro, M.; Cristofanelli, P.; Eskes, H.; Flemming, J.; Flentje, H.; et al. Evaluation of the MACC operational forecast system-potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere. Atmos. Chem. Phys. 2015, 15, 14005. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Emili, E.; Barret, B.; Massart, S.; Le Flochmoen, E.; Piacentini, A.; El Amraoui, L.; Pannekoucke, O.; Cariolle, D. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model. Atmos. Chem. Phys. 2014, 14, 177–198. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.; Andersson, E. Developments in 4D-Var and Kalman Filtering; Technical Memorandum Research Department: Berkshire, UK, 2001; Volume 347. [Google Scholar]
- Semane, N.; Peuch, V.H.; El Amraoui, L.; Bencherif, H.; Massart, S.; Cariolle, D.; Attié, J.L.; Abida, R. An observed and analysed stratospheric ozone intrusion over the high Canadian Arctic UTLS region during the summer of 2003. Quart. J. Roy. Meteor. Soc. 2007, 133, 171–178. [Google Scholar] [CrossRef]
- El Amraoui, L.; Peuch, V.H.; Ricaud, P.; Massart, S.; Semane, N.; Teyssèdre, H.; Cariolle, D.; Karcher, F. Ozone loss in the 2002–2003 Arctic vortex deduced from the assimilation of Odin/SMR O3 and N2O measurements: N2O as a dynamical tracer. Quart. J. Roy. Meteor. Soc. 2008, 134, 217–228. [Google Scholar] [CrossRef]
- El Amraoui, L.; Semane, N.; Peuch, V.H.; Santee, M.L. Investigation of dynamical processes in the polar stratospheric vortex during the unusually cold winter 2004/2005. Geophys. Res. Lett. 2008, 35, L03803. [Google Scholar] [CrossRef]
- Rabier, F.; Bouchard, A.; Brun, E.; Doerenbecher, A.; Guedj, S.; Guidard, V.; Karbou, F.; Peuch, V.; El Amraoui, L.; Puech, D.; et al. The Concordiasi Project in Antarctica. Bull. Am. Meteor. Soc. 2010, 91, 69–86. [Google Scholar] [CrossRef]
- Bencherif, H.; El Amraoui, L.; Kirgis, G.; Leclair De Bellevue, J.; Hauchecorne, A.; Mzé, N.; Portafaix, T.; Pazmino, A.; Goutail, F. Analysis of a rapid increase of stratospheric ozone during late austral summer 2008 over Kerguelen (49.4∘S, 70.3∘E). Atmos. Chem. Phys. 2011, 11, 363–373. [Google Scholar] [CrossRef] [Green Version]
- El Amraoui, L.; Attié, J.L.; Semane, N.; Claeyman, M.; Peuch, V.H.; Warner, J.; Ricaud, P.; Cammas, J.P.; Piacentini, A.; Josse, B.; et al. Midlatitude stratosphere–troposphere exchange as diagnosed by MLS O3 and MOPITT CO assimilated fields. Atmos. Chem. Phys. 2010, 10, 2175–2194. [Google Scholar] [CrossRef] [Green Version]
- Claeyman, M.; Attie, J.L.; Peuch, V.H.; El Amraoui, L.; Lahoz, W.A.; Josse, B.; Ricaud, P.; von Clarmann, T.; Hopfner, M.; Orphal, J.; et al. A geostationary thermal infrared sensor to monitor the lowermost troposphere: O3 and CO retrieval studies. Atmos. Meas. Tech. 2011, 4, 297–317. [Google Scholar] [CrossRef] [Green Version]
- Payra, S.; Ricaud, P.; Abida, R.; El Amraoui, L.; Attié, J.L.; Rivière, E.; Carminati, F.; Clarmann, T.V. Evaluation of water vapour assimilation in the tropical upper troposphere and lower stratosphere by a chemical transport model. Atmos. Meas. Tech. 2016, 9, 4355–4373. [Google Scholar] [CrossRef] [Green Version]
- Josse, B.; Simon, P.; Peuch, V.H. Radon global simulation with the multiscale chemistry trasnport model MOCAGE. Tellus 2004, 56, 339–356. [Google Scholar] [CrossRef]
- Teyssèdre, H.; Michou, M.; Clark, H.L.; Josse, B.; Karcher, F.; Olivié, D.; Peuch, V.H.; Saint-Martin, D.; Cariolle, D.; Attié, J.L.; et al. A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: Evaluation of the present-day climatology and sensitivity to surface processes. Atmos. Chem. Phys. 2007, 7, 5815–5860. [Google Scholar] [CrossRef] [Green Version]
- Bousserez, N.; Attié, J.L.; Peuch, V.H.; Michou, M.; Pfister, G.; Edwards, D.; Emmons, L.; Mari, C.; Barret, B.; Arnold, S.R.; et al. Evaluation of the MOCAGE chemistry transport model during the ICARTT/ITOP experiment. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Lacressonnière, G.; Peuch, V.; Arteta, J.; Josse, B.; Joly, M.; Marécal, V.; Martin, D.; Déqué, M.; Watson, L. How realistic are air quality hindcasts driven by forcings from climate model simulations? Geosci. Model Dev. 2012, 5, 1565–1587. [Google Scholar] [CrossRef] [Green Version]
- Barré, J.; EL Amraoui, L.; Ricaud, P.; Lahoz, W.A.; Attié, J.L.; Peuch, V.H.; Josse, B.; Marécal, V. Diagnosing the transition layer at extratropical latitudes using MLS O3 and MOPITT CO analyses. Atmos. Chem. Phys. 2013, 13, 7225–7240. [Google Scholar] [CrossRef] [Green Version]
- Martet, M.; Peuch, V.H.; Laurent, B.; Marticorena, B.; Bergametti, G. Evaluation of long-range transport and deposition of desert dust with the CTM MOCAGE. Tellus B 2009, 61, 449–463. [Google Scholar] [CrossRef]
- Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. Modelling of primary aerosols in the chemical transport model MOCAGE: Development and evaluation of aerosol physical parameterizations. Geosci. Model Dev. 2015, 8, 381–408. [Google Scholar] [CrossRef] [Green Version]
- Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P. First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geosci. Model Dev. 2016, 9, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Heil, A.; Andreae, M.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527. [Google Scholar] [CrossRef] [Green Version]
- Courtier, P.; Freydier, C.; Geleyn, J.; Rabier, F.; Rochas, M. The ARPEGE project at Météo France. In Atmospheric Models; ECMWF Workshop on Numerical Methods: Reading, UK, 1991; Volume 2, pp. 193–231. [Google Scholar]
- Bilal, M.; Qiu, Z.; Campbell, J.R.; Spak, S.N.; Shen, X.; Nazeer, M. A new MODIS C6 Dark Target and Deep Blue merged aerosol product on a 3 km spatial grid. Remote Sens. 2018, 10, 463. [Google Scholar] [CrossRef] [Green Version]
- Daley, R. Atmospheric Data Analysis; Number 2; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Sič, B. Amélioration de la Représentation des Aérosols dans un Modèle de Chimie-Transport: Modélisation et Assimilation de Données. Ph.D. Thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France, 2014. [Google Scholar]
- Anderson, J.C.; Wang, J.; Zeng, J.; Leptoukh, G.; Petrenko, M.; Ichoku, C.; Hu, C. Long-term statistical assessment of Aqua-MODIS aerosol optical depth over coastal regions: Bias characteristics and uncertainty sources. Tellus B Chem. Phys. Meteorol. 2013, 65, 20805. [Google Scholar] [CrossRef]
- Bennouna, Y.; Cachorro, V.; Toledano, C.; Berjón, A.; Prats, N.; Fuertes, D.; Gonzalez, R.; Rodrigo, R.; Torres, B.; de Frutos, A. Comparison of atmospheric aerosol climatologies over southwestern Spain derived from AERONET and MODIS. Remote Sens. Environ. 2011, 115, 1272–1284. [Google Scholar] [CrossRef]
- Remer, L.; Mattoo, S.; Levy, R.; Munchak, L. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Toledano, C.; González, R.; Fuertes, D.; Cuevas, E.; Eck, T.F.; Kazadzis, S.; Kouremeti, N.; Gröbner, J.; Goloub, P.; Blarel, L.; et al. Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña. Atmos. Chem. Phys. 2018, 18, 14555–14567. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L.; Zhang, L. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces. Atmos. Environ. 2019, 200, 280–301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, L.; Tong, D.Q.; Wu, G.; Dan, M.; Teng, B. A systematic review of global desert dust and associated human health effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Nickovic, S.; Cvetkovic, B.; Petković, S.; Amiridis, V.; Pejanović, G.; Solomos, S.; Marinou, E.; Nikolic, J. Cloud icing by mineral dust and impacts to aviation safety. Sci. Rep. 2021, 11, 6411. [Google Scholar] [CrossRef]
- Middleton, N. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Ramírez-Romero, C.; Jaramillo, A.; Córdoba, M.F.; Raga, G.B.; Miranda, J.; Alvarez-Ospina, H.; Rosas, D.; Amador, T.; Kim, J.S.; Yakobi-Hancock, J.; et al. African dust particles over the western Caribbean–Part I: Impact on air quality over the Yucatán Peninsula. Atmos. Chem. Phys. 2021, 21, 239–253. [Google Scholar] [CrossRef]
- Rodríguez, S.; Cuevas, E.; Prospero, J.M.; Alastuey, A.; Querol, X.; López-Solano, J.; García, M.I.; Alonso-Pérez, S. Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys. 2015, 15, 7471–7486. [Google Scholar] [CrossRef] [Green Version]
- Hermida, L.; Merino, A.; Sánchez, J.; Fernández-González, S.; García-Ortega, E.; López, L. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula. Atmos. Res. 2018, 199, 29–39. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hyde, J.C.; Yedinak, K.M.; Talhelm, A.F.; Smith, A.M.; Bowman, D.M.; Johnston, F.H.; Lahm, P.; Fitch, M.; Tinkham, W.T. Air quality policy and fire management responses addressing smoke from wildland fires in the United States and Australia. Int. J. Wildland Fire 2017, 26, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Schulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological Restoration Of Southwestern Ponderosa Pine Ecosystems: A Broad Perspective. Ecol. Appl. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Reisen, F.; Duran, S.M.; Flannigan, M.; Elliott, C.; Rideout, K. Wildfire smoke and public health risk. Int. J. Wildland Fire 2015, 24, 1029–1044. [Google Scholar] [CrossRef]
- Damoah, R.; Spichtinger, N.; Forster, C.; James, P.; Mattis, I.; Wandinger, U.; Beirle, S.; Wagner, T.; Stohl, A. Around the world in 17 days - hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos. Chem. Phys. 2004, 4, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- Adetona, O.; Reinhardt, T.E.; Domitrovich, J.; Broyles, G.; Adetona, A.M.; Kleinman, M.T.; Ottmar, R.D.; Naeher, L.P. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal. Toxicol. 2016, 28, 95–139. [Google Scholar] [CrossRef]
- Smith, A.M.; Kolden, C.A.; Paveglio, T.B.; Cochrane, M.A.; Bowman, D.M.; Moritz, M.A.; Kliskey, A.D.; Alessa, L.; Hudak, A.T.; Hoffman, C.M.; et al. The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience 2016, 66, 130–146. [Google Scholar] [CrossRef]
- Schweizer, D.; Cisneros, R. Forest fire policy: Change conventional thinking of smoke management to prioritize long-term air quality and public health. Air Qual. Atmos. Health 2017, 10, 33–36. [Google Scholar] [CrossRef]
- Ikemori, F.; Honjyo, K.; Yamagami, M.; Nakamura, T. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan. Sci. Total Environ. 2015, 530–531, 403–410. [Google Scholar] [CrossRef]
- Dreessen, J.; Sullivan, J.; Delgado, R. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9–12, 2015. J. Air Waste Manag. Assoc. 2016, 66, 842–862. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.; Hafner, W.; Chand, D.; Westerling, A.; Spracklen, D. Interannual variations in PM2.5 due to wildfires in the Western United States. Environ. Sci. Technol. 2008, 42, 2812–2818. [Google Scholar] [CrossRef] [PubMed]
- Spracklen, D.V.; Logan, J.A.; Mickley, L.J.; Park, R.J.; Yevich, R.; Westerling, A.L.; Jaffe, D.A. Wildfires drive interannual variability of organic carbon aerosol in the western US in summer. Geophys. Res. Lett. 2007, 34, L16816. [Google Scholar] [CrossRef] [Green Version]
2018 | 2019 | |||||
---|---|---|---|---|---|---|
Correlation | Bias | RMSE | Correlation | Bias | RMSE | |
Forecast vs. MODIS Observations | 0.57 | −0.021 | 0.19 | 0.57 | −0.019 | 0.18 |
Analyses vs. MODIS Observations | 0.79 | −0.010 | 0.13 | 0.76 | −0.009 | 0.14 |
Station (Lat ()); Lon ()) | Altitude (m) | Correlation | Bias | RMSE | |
---|---|---|---|---|---|
Lampedusa (35.517; 12.632) | 45.0 | 1457 | 0.73 | −0.041 | 0.178 |
Napoli_CeSMA (40.837; 14.307) | 50.0 | 2591 | 0.89 | −0.050 | 0.107 |
Technion_Haifa_IL (32.776; 35.025) | 230.0 | 2159 | 0.52 | −0.024 | 0.118 |
Thessaloniki (40.63; 22.96) | 60.0 | 1824 | 0.84 | −0.001 | 0.059 |
Gozo (36.034; 14.265) | 111.0 | 579 | 0.73 | −0.129 | 0.296 |
SEDE_BOKER (30.855; 34.782) | 480.0 | 1503 | 0.73 | 0.012 | 0.093 |
El_Farafra (27.058; 27.991) | 92.0 | 2836 | 0.66 | 0.012 | 0.191 |
Lamezia_Terme (38.876; 16.232) | 8.0 | 2223 | 0.82 | −0.031 | 0.099 |
Weizmann_Institute (31.907; 34.811) | 73.0 | 2036 | 0.65 | −0.011 | 0.106 |
IMAA_Potenza (40.601; 15.724) | 770.0 | 617 | 0.86 | −0.028 | 0.058 |
CUT-TEPAK (34.675; 33.043) | 22.0 | 2213 | 0.89 | −0.024 | 0.093 |
Eilat (29.503; 34.918) | 15.0 | 1523 | 0.60 | 0.054 | 0.121 |
LAQUILA_Coppito (42.369; 13.351) | 656.0 | 1302 | 0.82 | −0.054 | 0.149 |
ATHENS-NOA (37.972; 23.718) | 130.0 | 2378 | 0.84 | −0.039 | 0.105 |
Lecce_University (40.335; 18.111) | 30.0 | 385 | 0.93 | −0.056 | 0.094 |
Cairo_EMA_2 (30.081; 31.290) | 70.0 | 2233 | 0.64 | 0.130 | 0.187 |
Galata_Platform (43.045; 28.193) | 31.0 | 1879 | 0.69 | −0.015 | 0.067 |
All sites | 29,738 | 0.71 | 0.009 | 0.131 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Amraoui, L.; Plu, M.; Guidard, V.; Cornut, F.; Bacles, M. A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model. Remote Sens. 2022, 14, 1949. https://doi.org/10.3390/rs14081949
El Amraoui L, Plu M, Guidard V, Cornut F, Bacles M. A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model. Remote Sensing. 2022; 14(8):1949. https://doi.org/10.3390/rs14081949
Chicago/Turabian StyleEl Amraoui, Laaziz, Matthieu Plu, Vincent Guidard, Flavien Cornut, and Mickaël Bacles. 2022. "A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model" Remote Sensing 14, no. 8: 1949. https://doi.org/10.3390/rs14081949
APA StyleEl Amraoui, L., Plu, M., Guidard, V., Cornut, F., & Bacles, M. (2022). A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model. Remote Sensing, 14(8), 1949. https://doi.org/10.3390/rs14081949