Direct and Legacy Effects of Spring Temperature Anomalies on Seasonal Productivity in Northern Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Biome Classification
2.2. Data Sets of Gross Primary Productivity
2.2.1. GOSIF-GPP
2.2.2. NIRv-GPP
2.2.3. FluxSat-GPP
Name | Spatial | Temporal | Time Span | Data Source |
---|---|---|---|---|
GOSIF-GPP | 0.05 | monthly | 2001–2018 | [30] |
NIRv-GPP | 0.05 | monthly | 2001–2018 | [24] |
FluxSat-GPP | 0.05 | monthly | 2001–2018 | [25] |
MODIS land cover (MCD12C1 v006) | 0.05 | yearly | 2011 | [26] |
the Köppen–Geiger climate map | 1 km | static | 2007 | [27,28,32] |
ERA5-land (air temperature, soil moisture and VPD) | 0.1 | monthly | 2001–2018 | [33] |
2.3. ERA5-Land Air Temperature, Soil Moisture and Vapor Pressure Deficit
2.4. Pre-Treatment of the Data
2.5. Pearson’s Correlations between Anomalies to and Anomalies
2.6. General Overview of Methodology
3. Results
3.1. Effects of Anomalies on Current and Post-Season GPP
3.2. Latitudinal Distributions for Legacy Effects of Anomalies on and
3.3. Effects of Anomalies on GPP, GPP, and GPP for Each Biome
3.4. Transition Patterns for Legacy Effects of on GPP and GPP
3.5. Dominant Drivers for GPP and GPP
3.6. The Importance of Drivers on GPP and GPP Aggregated on the Biome Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Arctic and Boreal Shrublands |
AG | Arctic Grasslands |
AVHRR | Advanced Very High Resolution Radiometer |
BRDF | Bidirectional Reflectance Distribution Function |
CRO | Croplands |
DBF | Deciduous Broadleaf Forests |
DNF | Deciduous Needleleaf Forests |
EBF | Evergreen Broadleaf Forests |
EC | Eddy Co-variance |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ENF | Evergreen Needleleaf Forests |
EVI | Enhanced Vegetation Index |
FluxSat | Fluxnet Data Fused with Satellite Images |
GOME | Global Ozone Monitoring Experiment |
GOSIF | the Global, OCO-2-based SIF Product |
GPP | Gross Primary Productivity |
IGBP | International Geosphere-Biosphere Programme |
LTDR | Land Long-Term Data Record |
MF | Mixed Forests |
MODIS | Moderate Resolution Imaging Spectrometer |
NDVI | Normalized Difference Vegetation Index |
NIRv | Near-infrared Reflectance of Vegetation |
OCO-2 | Orbiting Carbon Observatory-2 |
PAR | Photosynthetic Active Radiation |
PW | Permanent Wetlands |
SIF | Solar Induced Fluorescence |
SM | Soil Moisture |
SV | Savannas |
T | Temperature |
TG | Temperate Grasslands |
TS | Temperate Shrublands |
VPD | Vapor Pressure Deficit |
Appendix A
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; Core Writing Team: Geneva, Switzerland, 2014. [Google Scholar]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Piao, S.; Chen, A.; Wang, K.; Li, X.; Buermann, W.; Huntingford, C.; Peñuelas, J.; Xu, H.; Myneni, R.B. Seasonal biological carryover dominates northern vegetation growth. Nat. Commun. 2021, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Döscher, R.; Koenigk, T.; Miller, P.; Jansson, C.; Samuelsson, P.; Wu, M.; Smith, B. The interplay of recent vegetation and sea ice dynamics—results from a regional Earth system model over the Arctic. Geophys. Res. Lett. 2020, 47, e2019GL085982. [Google Scholar] [CrossRef]
- Buermann, W.; Forkel, M.; O’sullivan, M.; Sitch, S.; Friedlingstein, P.; Haverd, V.; Jain, A.K.; Kato, E.; Kautz, M.; Lienert, S.; et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Fan, L.; Wigneron, J.; Weber, U.; Reichstein, M.; Fu, Z.; et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 2020, 6, eaba2724. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Tan, J.; Chen, A.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.; Jeong, S.J.; et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 2015, 6, 6911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Jönsson, A.M.; Olsson, C.; Lindström, J.; Jönsson, P.; Eklundh, L.; Yohe, G. New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. Int. J. Biometeorol. 2019, 63, 763–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weijers, S.; Myers-Smith, I.; Löffler, J. A warmer and greener cold world: Summer warming increases shrub growth in the alpine and high arctic tundra. Erdkunde 2018, 72, 63–85. [Google Scholar] [CrossRef] [Green Version]
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L.; Gaglioti, B.V.; et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 2020, 11, 4621. [Google Scholar] [CrossRef]
- Kunert, N.; Hajek, P.; Hietz, P.; Morris, H.; Rosner, S.; Tholen, D. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Reichstein, M.; Luyssaert, S.; Margolis, H.; Fang, J.; Barr, A.; Chen, A.; et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 2008, 451, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Pongratz, J.; Reick, C.H.; Raddatz, T.; Claussen, M. Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett. 2010, 37, L08702. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Song, C.; Band, L.E.; Sun, G.; Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Lian, X.; Piao, S.; Li, L.Z.; Li, Y.; Huntingford, C.; Ciais, P.; Cescatti, A.; Janssens, I.A.; Peñuelas, J.; Buermann, W.; et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 2020, 6, eaax0255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buermann, W.; Bikash, P.R.; Jung, M.; Burn, D.H.; Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 2013, 8, 024027. [Google Scholar] [CrossRef]
- Parida, B.R.; Buermann, W. Increasing summer drying in North American ecosystems in response to longer nonfrozen periods. Geophys. Res. Lett. 2014, 41, 5476–5483. [Google Scholar] [CrossRef]
- Kelsey, K.C.; Pedersen, S.H.; Leffler, A.J.; Sexton, J.O.; Feng, M.; Welker, J.M. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Chang. Biol. 2021, 27, 1572–1586. [Google Scholar] [CrossRef]
- Wipf, S.; Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 2010, 29, 95–109. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Guo, W.; Liu, H.; Li, X.; Peng, C.; Allen, C.D.; Zhang, C.; Wang, P.; Pei, T.; Ma, Y.; et al. Exposures to temperature beyond threshold disproportionately reduce vegetation growth in the northern hemisphere. Natl. Sci. Rev. 2018, 6, 786–795. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zhang, Y.; Ju, W.; Qiu, B.; Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 2021, 755, 142569. [Google Scholar] [CrossRef] [PubMed]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C.J. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Zeitschrif 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Belward, A.S. The IGBP-DIS global 1-km land-cover data set DIS-Cover: A project overview. Photogramm. Eng. Remote Sens. 1999, 65, 1013–1020. [Google Scholar]
- Li, X.; Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tam, C.Y.; Tai, A.P.; Lau, N.C. Vegetation-heatwave correlations and contrasting energy exchange responses of different vegetation types to summer heatwaves in the Northern Hemisphere during the 1982–2011 period. Agric. For. Meteorol. 2021, 296, 108208. [Google Scholar] [CrossRef]
- Friedl, M.A.; Gray, J.M.; Melaas, E.K.; Richardson, A.D.; Hufkens, K.; Keenan, T.F.; Bailey, A.; O’Keefe, J. A tale of two springs: Using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ. Res. Lett. 2014, 9, 054006. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Fu, Y.H.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Chang. Biol. 2016, 22, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, Y.; Ciais, P.; Xiao, X.; Luo, Y.; Caylor, K.; Huang, Y.; Wang, S. Dominant role of plant physiology in trend and variability of gross primary productivity in North America. Sci. Rep. 2017, 7, 41366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; Saleous, N.E. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosciences 2011, 116, G00J07. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Eugster, W.; Ammann, C.; Häni, M.; Zielis, S.; Hiller, R.; Stieger, J.; Imer, D.; Merbold, L.; Buchmann, N. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ. Res. Lett. 2013, 8, 035007. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Myneni, R.; Chapin Iii, F.; Callaghan, T.V.; Pinzon, J.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Fu, Y.H.; Zhu, Z.; Liu, Y.; Liu, Z.; Huang, M.; Janssens, I.A.; Piao, S. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Chang. Biol. 2016, 22, 3702–3711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Commane, R.; Zhou, S.; Williams, A.P.; Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Chang. 2020, 10, 739–743. [Google Scholar] [CrossRef]
- Zhang, Y.; Parazoo, N.C.; Williams, A.P.; Zhou, S.; Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl. Acad. Sci. USA 2020, 117, 9216–9222. [Google Scholar] [CrossRef] [PubMed]
Name | Short Name | Description |
---|---|---|
Evergreen needleleaf forests | ENF | Dominated by Evergreen conifer trees, (canopy > 2 m). Tree cover > 60% |
Evergreen broadleaf forests | EBF | Dominated by evergreen broadleaf and palmate trees (canopy > 2 m). Tree cover > 60% |
Deciduous needleleaf forests | DNF | Dominated by deciduous needleleaf (larch) trees (canopy > 2 m). Tree cover > 60% |
Deciduous broadleaf forests | DBF | Dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60% |
Mixed forests | MF | Mixed between deciduous and evergreen (40–60% of each tree type) (canopy > 2 m). Tree cover > 60% |
Arctic and boreal shrublands | ABS | Dominated by woody perennials (1–2 m height) including both closed and open shrublands |
Temperate shrublands | TS | Dominated by woody perennials (1–2 m height) including both closed and open shrublands |
Savanna | SA | Tree cover 10–30% (canopy > 2 m). |
Arctic grasslands | AG | Dominated by herbaceous annuals (<2 m). |
Temperate grasslands | TG | Dominated by herbaceous annuals (<2 m). |
Permanent Wetlands | PW | Permanently inundated lands with 30–60% water cover and >10% vegetated cover. |
Croplands | CRO | At least 60% of area is cultivated cropland. |
X: Predictive | Y | Type |
---|---|---|
Spring: T | Spring: GPP | Pearson, Direct |
Spring: T | Summer: GPP | Pearson, Direct |
Spring: T | Autumn: GPP | Pearson, Direct |
Spring: T, GPP, Summer: T, SM, VPD | Summer: GPP | Pearson, Partial |
Spring: T, GPP, Summer + Autumn: T, SM, VPD | Autumn: GPP | Pearson, Partial |
Summer | Autumn | |||||
---|---|---|---|---|---|---|
GOSIF-GPP | NIRv-GPP | FluxSat-GPP | GOSIF-GPP | NIRv-GPP | FluxSat-GPP | |
ENF | 46.18% | 36.48% | 56.66% | 48.55% | 47.24% | 69.47% |
EBF | 59.94% | 45.12% | 68.81% | 78.18% | 63.39% | 79.33% |
DNF | 39.11% | 32.87% | 53.77% | 57.42% | 36.52% | 49.64% |
DBF | 58.45% | 47.54% | 44.92% | 70.68% | 47.96% | 73.17% |
MF | 42.02% | 41.90% | 53.44% | 52.64% | 38.39% | 63.91% |
ABS | 57.10% | 25.67% | 73.06% | 48.50% | 33.46% | 46.82% |
TS | 85.36% | 40.04% | 81.64% | 89.61% | 54.85% | 81.69% |
SA | 51.80% | 34.46% | 64.13% | 51.20% | 43.88% | 60.05% |
AG | 62.32% | 18.18% | 59.88% | 36.20% | 19.67% | 40.11% |
TG | 81.17% | 56.69% | 76.83% | 62.53% | 40.58% | 63.32% |
PW | 51.81% | 18.57% | 57.05% | 48.99% | 24.44% | 62.68% |
CRO | 76.06% | 55.04% | 57.67% | 78.99% | 50.22% | 73.97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsh, H.; Zhang, W. Direct and Legacy Effects of Spring Temperature Anomalies on Seasonal Productivity in Northern Ecosystems. Remote Sens. 2022, 14, 2007. https://doi.org/10.3390/rs14092007
Marsh H, Zhang W. Direct and Legacy Effects of Spring Temperature Anomalies on Seasonal Productivity in Northern Ecosystems. Remote Sensing. 2022; 14(9):2007. https://doi.org/10.3390/rs14092007
Chicago/Turabian StyleMarsh, Hanna, and Wenxin Zhang. 2022. "Direct and Legacy Effects of Spring Temperature Anomalies on Seasonal Productivity in Northern Ecosystems" Remote Sensing 14, no. 9: 2007. https://doi.org/10.3390/rs14092007
APA StyleMarsh, H., & Zhang, W. (2022). Direct and Legacy Effects of Spring Temperature Anomalies on Seasonal Productivity in Northern Ecosystems. Remote Sensing, 14(9), 2007. https://doi.org/10.3390/rs14092007