Estimation of Photovoltaic Energy in China Based on Global Land High-Resolution Cloud Climatology
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data
2.2.1. GLHCC Global Land Cloud Coverage Products
2.2.2. Meteorological Station Data
2.2.3. SRTM DEM Data
2.2.4. Data for Consistency Checking
3. Materials and Methods
3.1. Relative Sunshine Percentage
3.2. Calculation of Basic Astronomical and Geographic Data
3.3. Calculation of Empirical Coefficient of Radiation Estimation Model
3.4. Optimal Model Selection and Estimation of PV Energy Distribution
3.5. Calculation of Terrain Shielding Factor
- Solar zenith angle
- Solar azimuth angle
- Calculation of slope and aspect
4. Results and Analysis
4.1. Sunshine Percentage
4.2. Empirical Coefficient of Solar Radiation Estimation Model
4.3. Terrain Shielding
4.4. PV Energy Distribution
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
ASR | Astronomical Solar Radiation |
CloudSat | Cloud Detecting Satellite |
DEM | Digital Terrain Elevation Model |
DIF | Diffuse Horizontal Radiation |
DNI | Direct Normal Exposure |
ELM | Extreme Learning Machine |
EOS | Earth Observing System |
GEOS | Geosynchronous Earth Orbit Satellite |
GHI | Global Horizontal Irradiance |
GLHCC | Global Land High-resolution Cloud Climatology |
GPR | Gaussian Process Regression |
GTI | Global Radiation for Optimal Tilted Surfaces |
IDW | Inverse Distance Weighting |
ISCCP | International Satellite Cloud Climatology Project |
LSF | Least Squares Fit |
MAE | Mean Absolute Error |
Meteosat | Meteorological Satellite |
MM | Markov Model |
MODIS | Moderate-Resolution Imaging Spectroradiometer |
MTSAT | Multi-Function Transport Satellite |
NASA | National Aeronautics and Space Administration |
NOAA | National Oceanic and Atmospheric Administration |
NSRDB | National Solar Radiation Database |
OPTA | Optimal Tilt of Photovoltaic Modules |
PATMOS-X | Pathfinder Atmospheres—Extended |
PV | Photovoltaic |
PVGIS | Photovoltaic Geographic Information System |
PVOUT | Photovoltaic Power Potential |
RF | Random Forest |
RMSE | Root Mean Square Error |
SRTM | Shuttle Radar Topography Mission |
SVM | Support Vector Machine |
TEMP | Air Temperature 2 m above ground |
References
- Pandey, A.K.; Tyagi, V.V.; Selvaraj, J.A.L.; Rahim, N.A.; Tyagi, S.K. Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 2016, 53, 859–884. [Google Scholar] [CrossRef]
- Niu, D.X.; Zhen, H.; Yu, M.; Wang, K.K.; Sun, L.J.; Xu, X.M. Prioritization of renewable energy alternatives for China by using a hybrid FMCDM methodology with uncertain information. Sustainability 2020, 12, 4649. [Google Scholar] [CrossRef]
- Fu, J.; Xu, J.; Liu, Y.; Xie, L.; Liu, S. China actively promotes CO2 capture, utilization and storage research to achieve carbon peak and carbon neutrality. Adv. Geo-Energy Res. 2022, 6, 1–3. [Google Scholar]
- Barragan-Escandon, A.; Zalamea-Leon, E.; Terrados-Cepeda, J. Incidence of photovoltaics in cities based on indicators of occupancy and urban sustainability. Energies 2019, 12, 810. [Google Scholar] [CrossRef] [Green Version]
- Olowu, T.O.; Sundararajan, A.; Moghaddami, M.; Sarwat, A.I. Future challenges and mitigation methods for high photovoltaic penetration: A survey. Energies 2018, 11, 1782. [Google Scholar] [CrossRef] [Green Version]
- Gairaa, K.; Khellaf, A.; Messlem, Y.; Chellali, F. Estimation of the daily global solar radiation based on Box-Jenkins and ANN models: A combined approach. Renew. Sustain. Energy Rev. 2016, 57, 238–249. [Google Scholar] [CrossRef]
- Dumas, A.; Andrisani, A.; Bonnici, M.; Graditi, G.; Leanza, G.; Madonia, M.; Trancossi, M. A new correlation between global solar energy radiation and daily temperature variations. Sol. Energy 2015, 116, 117–124. [Google Scholar] [CrossRef]
- Doljak, D.; Stanojevic, G. Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy 2017, 127, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Agyekum, E.B.; Amjad, F.; Shah, L.; Velkin, V.I. Optimizing photovoltaic power plant site selection using analytical hierarchy process and density-based clustering—Policy implications for transmission network expansion, Ghana. Sustain. Energy Technol. 2021, 47, 101521. [Google Scholar] [CrossRef]
- Liu, X.Y.; Mei, X.R.; Li, Y.Z.; Zhang, Y.Q.; Wang, Q.S.; Jensen, F.R.; Porter, J.R. Calibration of the Angstrom-Prescott coefficients (a, b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin. Agric. For. Meteorol. 2009, 149, 697–710. [Google Scholar] [CrossRef]
- Tang, W.J.; Yang, K.; Qin, J.; Min, M. Development of a 50-year daily surface solar radiation dataset over China. Sci. China Earth Sci. 2013, 56, 1555–1565. [Google Scholar] [CrossRef]
- Li, M.F.; Fan, L.; Liu, H.B.; Guo, P.T.; Wu, W. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China. J. Atmos. Sol.-Terr. Phy. 2013, 92, 145–150. [Google Scholar] [CrossRef]
- Kimball, H.H. Variations in the total and luminous solar radiation with geographical position in the United State, Mn. Weather Rev. 1919, 47, 769–793. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and atmospheric radiation. Q. J. Roy. Meteor. Soc. 1924, 20, 121–126. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, L.; Deng, S.; Xu, W.C.; Zhang, Y. A critical review of the models used to estimate solar radiation. Renew. Sustain. Energy Rev. 2017, 70, 314–329. [Google Scholar] [CrossRef]
- Qin, W.M.; Wang, L.C.; Lin, A.W.; Zhang, M.; Xia, X.G.; Hu, B.; Niu, Z.G. Comparison of deterministic and data-driven models for solar radiation estimation in China. Renew. Sustain. Energy Rev. 2018, 81, 579–594. [Google Scholar] [CrossRef]
- Fan, J.L.; Wu, L.F.; Zhang, F.C.; Cai, H.J.; Ma, X.; Bai, H. Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China. Renew. Sustain. Energy Rev. 2019, 105, 168–186. [Google Scholar] [CrossRef]
- Agbulut, U.; Gurel, A.E.; Bicen, Y. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renew. Sustain. Energy Rev. 2021, 135, 110114. [Google Scholar] [CrossRef]
- Stanciu, C.; Stanciu, D. Optimum tilt angle for flat plate collectors all over the World—A declination dependence formula and comparisons of three solar radiation models. Energy Convers. Manag. 2014, 81, 133–143. [Google Scholar] [CrossRef]
- Hottel, M.C.; Woertz, B.B. Performance of flat plate solar heat collectors. Trans. ASME 1942, 64, 91–104. [Google Scholar]
- Liu, B.Y.H.; Jordan, R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Cai, T.; Duan, S.X.; Chen, C.S. Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement. In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 16–18 June 2010; pp. 773–777. [Google Scholar]
- Abouhashish, M. Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia. AIP Conf. Proc. 2017, 1850, 140001. [Google Scholar]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Petkovic, D. Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renew. Sustain. Energy Rev. 2015, 51, 1784–1791. [Google Scholar] [CrossRef]
- Amrouche, B.; Le Pivert, X. Artificial neural network based daily local forecasting for global solar radiation. Appl. Energy 2014, 130, 333–341. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petkovic, D.; Sudheer, C. A support vector machine firefly algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644. [Google Scholar] [CrossRef]
- Jiang, H.; Dong, Y. A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation. Energy Convers. Manag. 2016, 126, 991–1002. [Google Scholar] [CrossRef]
- Aguiar, R.J.; Collarespereira, M.; Conde, J.P. Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices. Sol. Energy 1988, 40, 269–279. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Sharma, V.; Srivastava, S.; Sastry, O.S.; Bandyopadhyay, B.; Chandel, S.S.; Gupta, J.R.P. Estimation of solar radiation using a combination of Hidden Markov Model and generalized Fuzzy model. Sol. Energy 2013, 93, 43–54. [Google Scholar] [CrossRef]
- Sahin, M.; Kaya, Y.; Uyar, M.; Yildirim, S. Application of extreme learning machine for estimating solar radiation from satellite data. Int. J. Energy Res. 2014, 38, 205–212. [Google Scholar] [CrossRef]
- Shamshirband, S.; Mohammadi, K.; Yee, P.L.; Petkovic, D.; Mostafaeipour, A. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew. Sustain. Energy Rev. 2015, 52, 1031–1042. [Google Scholar] [CrossRef]
- Benali, L.; Notton, G.; Fouilloy, A.; Voyant, C.; Dizene, R. Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renew. Energy 2019, 132, 871–884. [Google Scholar] [CrossRef]
- Babar, B.; Luppino, L.T.; Bostrom, T.; Anfinsen, S.N. Random forest regression for improved mapping of solar irradiance at high latitudes. Sol. Energy 2020, 198, 81–92. [Google Scholar] [CrossRef]
- Guermoui, M.; Gairaa, K.; Rabehi, A.; Djafer, D.; Benkaciali, S. Estimation of the daily global solar radiation based on the Gaussian process regression methodology in the Saharan climate. Eur. Phys. J. Plus 2018, 133, 211. [Google Scholar] [CrossRef]
- Rohani, A.; Taki, M.; Abdollahpour, M. A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I). Renew. Energy 2018, 115, 411–422. [Google Scholar] [CrossRef]
- Prescott, J.A. Evaporation from a water surface in relation to solar radiation. Trans. R. Soc. Aust. 1940, 46, 114–118. [Google Scholar]
- Iqbal, M. Correlation of Average Diffuse and Beam Radiation with Hours of Bright Sunshine. Sol. Energy 1979, 23, 169–173. [Google Scholar] [CrossRef]
- Bahel, V.; Bakhsh, H.; Srinivasan, R. A Correlation for Estimation of Global Solar-Radiation. Energy 1987, 12, 131–135. [Google Scholar] [CrossRef]
- Black, J.N.; Bonython, C.W.; Prescott, J.A. Solar Radiation and the Duration of Sunshine. Q. J. Roy. Meteor. Soc. 1954, 80, 231–235. [Google Scholar] [CrossRef]
- Coppolino, S. A New Correlation between Clearness Index and Relative Sunshine. Renew. Energy 1994, 4, 417–423. [Google Scholar] [CrossRef]
- Almorox, J.; Bocco, M.; Willington, E. Estimation of daily global solar radiation from measured temperatures at Canada de Luque, Cordoba, Argentina. Renew. Energy 2013, 60, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Yacef, R.; Benghanem, M.; Mellit, A. Prediction of daily global solar irradiation data using Bayesian neural network: A comparative study. Renew. Energy 2012, 48, 146–154. [Google Scholar] [CrossRef]
- Nunez, M.; Li, Y. A cloud-based reconstruction of surface solar radiation trends for Australia. Theor. Appl. Climatol. 2008, 91, 59–75. [Google Scholar] [CrossRef]
- Badescu, V.; Dumitrescu, A. Simple solar radiation modelling for different cloud types and climatologies. Theor. Appl. Climatol. 2016, 124, 141–160. [Google Scholar] [CrossRef]
- Almorox, J.; Hontoria, C. Global solar radiation estimation using sunshine duration in Spain. Energy Convers. Manag. 2004, 45, 1529–1535. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Guermoui, M.; Melgani, F.; Gairaa, K.; Mekhalfi, M.L. A comprehensive review of hybrid models for solar radiation forecasting. J. Clean Prod. 2020, 258, 120357. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.Z.; Yan, G. General formula for estimation of monthly average daily global solar radiation in China. Energy Convers. Manag. 2005, 46, 257–268. [Google Scholar]
- Wu, G.F.; Liu, Y.L.; Wang, T.J. Methods and strategy for modeling daily global solar radiation with measured meteorological data—A case study in Nanchang station, China. Energy Convers. Manag. 2007, 48, 2447–2452. [Google Scholar] [CrossRef]
- Li, H.S.; Ma, W.B.; Lian, Y.W.; Wang, X.L.; Zhao, L. Global solar radiation estimation with sunshine duration in Tibet, China. Renew. Energy 2011, 36, 3141–3145. [Google Scholar] [CrossRef]
- Yao, W.X.; Li, Z.R.; Wang, Y.Y.; Jiang, F.J.; Hu, L.Z. Evaluation of global solar radiation models for Shanghai, China. Energy Convers. Manag. 2014, 84, 597–612. [Google Scholar] [CrossRef]
- Rangarajan, S.; Swaminathan, M.S.; Mani, A. Computation of solar-radiation from observations of cloud cover. Sol. Energy 1984, 32, 553–556. [Google Scholar] [CrossRef]
- Sarkar, M.N.I. Estimation of solar radiation from cloud cover data of Bangladesh. Renewables 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.P.; Qiu, X.F.; Zeng, S.; Qiu, Y.P. Remote sensing integration model of sunshine percentage based on cloud cover images. J. Remote Sens. 2013, 7, 1508–1517. [Google Scholar]
- Morf, H. Sunshine and cloud cover prediction based on Markov processes. Sol. Energy 2014, 110, 615–626. [Google Scholar] [CrossRef]
- Zhu, W.W.; Wu, B.F.; Yan, N.N.; Ma, Z.H.; Wang, L.J.; Liu, W.J.; Xing, Q.; Xu, J.M. Estimating Sunshine Duration Using Hourly Total Cloud Amount Data from a Geostationary Meteorological Satellite. Atmosphere 2020, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Heidinger, A.; Foster, M.; Botambekov, D.; Hiley, M.; Walther, A.; Li, Y. Using the NASA EOS A-Train to probe the performance of the NOAA PATMOS-x cloud fraction CDR. Remote Sens. 2016, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- Foster, M.J.; Heidinger, A. PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Clim. 2013, 26, 414–425. [Google Scholar] [CrossRef]
- Schiffer, R.A.; Rossow, W.B. The International-Satellite-Cloud-Climatology-Project (Isccp)—The 1st project of the world climate research programme. Bull. Am. Meteorol. Soc. 1983, 64, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B.; Schiffer, R.A. Isccp cloud data products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Vane, D.; Stephens, G.L. The CloudSat mission and the A-Train: A revolutionary approach to observing earth’s atmosphere. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–5. [Google Scholar]
- Zhang, S.Y.; Ma, Y.; Chen, F.; Shang, E.P.; Yao, W.T.; Qiu, Y.B.; Liu, J.B. Global land high-resolution cloud climatology based on an improved MOD09 cloud mask. Remote Sens. 2021, 13, 3997. [Google Scholar] [CrossRef]
- Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- Sen, Z. Simple nonlinear solar irradiation estimation model. Renew. Energy 2007, 32, 342–350. [Google Scholar] [CrossRef]
- Zeng, Y.; Qiu, X.F.; Liu, S.M. Distributed modeling of extraterrestrial solar radiation over rugged terrains. Chin. J. Geophys. 2005, 48, 1028–1033. [Google Scholar]
- Dozier, J.; Frew, J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 963–969. [Google Scholar] [CrossRef]
- Bocquet, G. Method of study and cartography of the potential sunny periods in mountainous areas. J. Climatol. 1984, 4, 587–596. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Chen, X.Z.; Lu, L. Modification of solar radiation model over rugged terrain. Chin. Sci. Bull. 1999, 44, 1345–1350. [Google Scholar] [CrossRef]
- Zeng, Y.; Qiu, X.F.; Miao, Q.L.; Liu, C.M. Distribution of possible sunshine durations over rugged terrains of China. Prog. Nat. Sci.-Mater. 2003, 13, 761–764. [Google Scholar] [CrossRef]
- Zhu, X.C.; Qiu, X.F.; Zeng, Y.; Gao, J.Q.; He, Y.J. A remote sensing model to estimate sunshine duration in the Ningxia Hui Autonomous Region, China. J. Meteorol. Res. 2015, 29, 144–154. [Google Scholar] [CrossRef]
- Zhang, J.P.; Yang, Z.; Wang, D.J.; Zhang, X.B. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China. J. Arid Environ. 2002, 51, 153–162. [Google Scholar]
- Wang, D.C.; Wang, F.C.; Huang, Y.; Duan, X.; Liu, J.Y.; Hu, B.X.; Sun, Z.C.; Chen, J.H. Examining the effects of hydropower station construction on the surface temperature of the Jinsha River dry-hot valley at different seasons. Remote Sens. 2018, 10, 600. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ma, Y.; Chen, F.; Shang, E.; Yao, W.; Liu, J.; Long, A. Estimation of Photovoltaic Energy in China Based on Global Land High-Resolution Cloud Climatology. Remote Sens. 2022, 14, 2084. https://doi.org/10.3390/rs14092084
Zhang S, Ma Y, Chen F, Shang E, Yao W, Liu J, Long A. Estimation of Photovoltaic Energy in China Based on Global Land High-Resolution Cloud Climatology. Remote Sensing. 2022; 14(9):2084. https://doi.org/10.3390/rs14092084
Chicago/Turabian StyleZhang, Shuyan, Yong Ma, Fu Chen, Erping Shang, Wutao Yao, Jianbo Liu, and An Long. 2022. "Estimation of Photovoltaic Energy in China Based on Global Land High-Resolution Cloud Climatology" Remote Sensing 14, no. 9: 2084. https://doi.org/10.3390/rs14092084
APA StyleZhang, S., Ma, Y., Chen, F., Shang, E., Yao, W., Liu, J., & Long, A. (2022). Estimation of Photovoltaic Energy in China Based on Global Land High-Resolution Cloud Climatology. Remote Sensing, 14(9), 2084. https://doi.org/10.3390/rs14092084